XIX. Observations on different Kinds of Air. By Joseph Priestley, LL. D.

Read March 5, 1772. The following observations on the properties of several different kinds of air, I am sensible, are very imperfect, and some of the courses of experiments are incomplete; but a considerable number of facts, which appear to me to be new and important, are sufficiently ascertained; and I am willing to hope, that when philosophers in general are apprized of them, some persons may be able to pursue them to more advantage than myself. I therefore think it my duty to give this Society an account of the progress I have been able to make; and I shall not fail to communicate any farther lights that may occur to me, whenever I resume these inquiries.

In writing upon this subject, I find myself at a loss for proper terms, by which to distinguish the different kinds of air. Those which have hitherto obtained are by no means sufficiently characteristic, or distinct. The terms in common use are, fixed air, mephitic, and inflammable. The last, indeed, sufficiently characterizes and distinguishes that kind of air which takes fire, and explodes on the approach of flame; but it might have been termed fixed with
as much propriety as that to which Dr. Black and others have given that denomination, since it is originally part of some solid substance, and exists in an unelastic state, and therefore may be also called factitious. The term mephitic is equally applicable to what is called fixed air, to that which is inflammable, and to many other kinds; since they are equally noxious, when breathed by animals. Rather, however, than to introduce new terms, or change the signification of old ones, I shall use the term fixed air, in the sense in which it is now commonly used, and distinguish the other kinds by their properties, or some other periphrasis. I shall be under a necessity, however, of giving a name to one species of air, to which no name was given before.

Of fixed air.

Fixed air is that which is expelled by heat from lime, and other calcareous substances, and, when deprived of which, they become quick-lime. It is also contained in alkaline salts, and is generated in great quantities from fermenting vegetables; and being united with water, gives it the principal properties of Pyrmont-water. This kind of air is also well known to be fatal to animals; and Dr. Macbride has demonstrated, that it checks or prevents putrefaction.

Living for some time in the neighbourhood of a public brewery, I was induced to make a few experiments on this kind of air, there being always a large body of it, ready formed, upon the surface of the fermenting liquor, generally about nine inches or
or a foot in depth, within which any kind of substance may be very conveniently placed; and though it must be continually mixing with the common air, and is far from being perfectly pure, yet there is a constant supply from the fermenting liquor, and it is pure enough for many purposes.

A person, who is quite a stranger to the properties of this kind of air, would be agreeably amused with extinguishing lighted candles, or chips of wood in it, as it lies upon the surface of the fermenting liquor; for the smoke readily unites with this kind of air, probably by means of the water which it contains; so that very little or none of the smoke will escape into the open air, which is incumbent upon it. It is remarkable, that the upper surface of this smoke, floating in the fixed air, is smooth, and well defined; whereas the lower surface is exceedingly ragged, several parts hanging down to a considerable distance within the body of the fixed air, and sometimes in the form of balls, connected to the upper stratum by slender threads, as if they were suspended. The smoke is also apt to form itself into broad flakes, parallel to the surface of the liquor, and at different distances from it, exactly like clouds. These appearances will sometimes continue above an hour, with very little variation. When this fixed air is very strong, the smoke of a small quantity of gunpowder fired in it will be wholly retained by it, no part escaping into the common air.

Making an agitation in this air, the surface of it, which still continues to be exactly defined, is thrown into the form of waves, which it is very amusing to look upon; and if, by this agitation, any of the fixed air
air be thrown over the side of the vessel, the smoke, which is mixed with it, will fall to the ground, as if it was so much water, the fixed air being heavier than common air.

The red part of burning wood was extinguished in this air, but I could not perceive that a red-hot poker was sooner cooled in it.

Fixed air does not instantly mix with common air. Indeed, if it did, it could not be caught upon the fermenting liquor; for a candle put under a large receiver, and immediately plunged very deep below the surface of the fixed air, will burn some time. But vessels with the smallest orifices, hanging with their mouths downwards in the fixed air, will in time have the common air, which they contain, perfectly mixed with it. When the fermenting liquor is contained in vessels close covered up, the fixed air is rendered much stronger, and then it readily affects the common air which is contiguous to it; so that, upon removing the cover, candles held at a considerable distance above the surface will instantly go out. I have been told by the workmen, that this will sometimes be the case, when the candles are held more than half a yard above the mouth of the vessel.

Fixed air unites with the smoke of resin, sulphur, and other electrical substances, as well as with the vapour of water; and yet, by holding the wire of a charged phial among these fumes, I could not make any electrical atmosphere, which surprized me a good deal, as there was a large body of this smoke, and it was so confined, that it could not escape me. I also held some oil of vitriol in a glass vessel within the
the fixed air, and by plunging a piece of red hot glass into it, raised a copious and thick fume. This floated upon the surface of the fixed air like other fumes, and continued as long.

Considering the near affinity between water and fixed air, I concluded that if a quantity of water was placed near the yeast of the fermenting liquor, it could not fail to imbibe that air, and thereby acquire the principal properties of Pyrmont, and other medicinal mineral waters. Accordingly, I found, that when the surface of the water was considerable, it always acquired the pleafant acidulous tafte that Pyrmont water has. The readieft way of impregnating water with this virtue, in these circumstances, is to take two vefels, and to keep pouring the water from one into the other, when they are both of them held as near the yeast as possible; for by this means a great quantity of surface is exposed to the air, and the surface is also continually changing. In this manner, I have sometimes, in the space of two or three minutes, made a glafs of exceedingly pleafant sparkling water, which could hardly be diftinguifhed from very good Pyrmont.

But the moft effectual way of impregnating water with fixed air is to put the vefels which contain the water into glafs jars, filled with the pureft fixed air, made by the folution of chalk in diluted oil of vitriol, standing in quicksilver. In this manner I have, in about two days, made a quantity of water to imbibe more than an equal bulk of fixed air, fo that, according to Dr. Brownrigg’s experiments, it muft have been much stronger than the beft imported Pyrmont; for though he made his experiments at the spring head,
head, he never found that it contained quite so much as half its bulk of this air. If a sufficient quantity of quicksilver cannot be procured, oil may be used with sufficient advantage, for this purpose, as it imbibes the fixed air very slowly. Fixed air may be kept in vessels standing in water for a long time, if they be separated by a partition of oil, about half an inch thick. Pyrmont water made in these circumstances, is little or nothing inferior to that which has stood in quicksilver.

The readiest method of preparing this water for use is to agitate it strongly with its whole surface exposed to the fixed air. By this means also, more than an equal bulk of air may be communicated to a large quantity of water in the space of a few minutes. Easy directions for doing this I have published in a small pamphlet, designed originally for the use of seamen in long voyages, on the presumption that it might be of use for preventing or curing the sea scurvy, equally with wort, which was recommended by Dr. Macbride for this purpose, on no other account than its property of generating fixed air, by its fermentation in the stomach.

Water thus impregnated with fixed air readily dissolves iron, as Mr. Lane has discovered; so that if a quantity of iron filings be put to it, it presently becomes a strong chalybeate, and of the mildest and most agreeable kind.

I have recommended the use of chalk and oil of vitriol as the cheapest, and, upon the whole, the best materials for this purpose; and whereas some persons had suspected that a quantity of the oil of vitriol was rendered volatile by this process, I examined it by
by all the chemical methods that are in use; but could not find that water thus impregnated contained the least perceivable quantity of the acid.

Mr. Hey, indeed, who assisted me in this examination, found that distilled water, impregnated with fixed air, did not mix so readily with soap as the distilled water itself; but this was also the case when the fixed air had passed through a long glass tube filled with alkaline salts, which, it may be supposed, would have imbibed any of the oil of vitriol that might have been contained in that air *

It is not improbable but that fixed air itself may be of the nature of an acid, though of a weak and peculiar sort. Mr. Bergman of Upsal, who honoured me with a letter upon the subject, calls it the aerial acid, and, among other experiments to prove it to be an acid, he says that it changes the blue juice of tournesole into red.

The heat of boiling water will expel all the fixed air, if a phial containing the impregnated water be held in it; but it will often require above half an hour to do it completely.

Dr. Percival, who is particularly attentive to every improvement in the medical art, and who has thought so well of this impregnation as to prescribe it in several cases, informs me that it seems to be much stronger, and sparkles more, like the true Pyrmont water, after it has been kept some time. This circumstance, however, shews that, in time, the fixed air is more easily disengaged from the water, and

* An account of Mr. Hey's experiments will be found in the Appendix to these papers.

Vol. LXII. X though,
though, in this state, it may affect the taste more sensibly, it cannot be of so much use in the stomach and bowels, as when the air is more firmly retained by the water, though, in consequence of it, it be less sensible to the taste.

By the process described in my pamphlet, fixed air may be readily incorporated with wine, beer, and almost any other liquor whatever; and when beer, wine, or cyder, is become flat or dead (which is the consequence of the escape of the fixed air they contained) they may be revived by this means; but the delicate and agreeable flavour, or acidulous taste, communicated by fixed air, and which is very manifest in water, can hardly be perceived in wine, or any liquors which have much taste of their own.

I should think that there can be no doubt, but that water thus impregnated with fixed air must have all the medicinal virtues of genuine Pyrmont water; since these depend upon the fixed air it contains. If the genuine Pyrmont water derives any advantage from its being a natural chalybeate, this may also be obtained by providing a common chalybeate water, and using it in these processes, instead of common water.

Having succeeded so well with this artificial Pyrmont water, I imagined that it might be possible to give ice the same virtue, especially as cold is known to promote the absorption of fixed air by water; but in this I found myself quite mistaken. I put several pieces of ice into a quantity of fixed air, confined by quicksilver, but no part of the air was absorbed in two days and two nights; but upon bringing it into a place where the ice melted, the air was
was absorbed as usual. I then took a quantity of strong artificial Pyrmont water, and, putting it into a thin glass phial, I set it in a pot that was filled with snow and salt. This mixture instantly freezing the water that was contiguous to the sides of the glass, the air was discharged plentifully, so that I caught a considerable quantity, in a bladder tied to the mouth of the phial. I also took two quantities of the same Pyrmont water, and placed one of them where it might freeze, keeping the other in a cold place, but where it would not freeze. This retained its acidulous taste, though the phial which contained it was not corked; whereas the other, being brought into the same place, where the ice melted very slowly, had at the same time the taste of common water only. That quantity of water which had been frozen by the mixture of snow and salt, was almost as much like snow as ice, such a quantity of air bubbles were contained in it, by which it was prodigiously increased in bulk.

The pressure of the atmosphere afflicts very considerably in keeping fixed air confined in water: for in an exhausted receiver, Pyrmont water will absolutely boil, by the copious discharge of its air. This is also the reason why beer and ale froth so much in vacuo. I do not doubt, therefore, but that, by the help of a condensing engine, water might be much more highly impregnated with the virtues of the Pyrmont spring, and it would not be difficult to contrive a method of doing it.

The manner in which I made several experiments to ascertain the absorption of fixed air by different fluid substances was to put the liquid into a dish, X 2 and
and holding it within the body of the fixed air at the brewery, to set a glass vessel into it, with its mouth inverted. This glass being necessarily filled with the fixed air, the liquor would rise into it when they were both taken into the common air, if the fixed air was absorbed at all.

Making use of ether in this manner, there was a constant bubbling from under the glass, occasioned by this fluid easily rising in vapour, so that I could not, in this method, determine whether it imbibed the air or not. I concluded, however, that they did incorporate, from a very disagreeable circumstance, which made me desist from making any more experiments of the kind. For all the beer, over which this experiment was made, contracted a peculiar taste, the fixed air impregnated with the ether being, I suppose, again absorbed by the beer. I have also observed, that water which remained a long time within this air has sometimes acquired a very disagreeable taste. At one time it was like tar-water. How this was acquired, I was very desirous of making some experiments to ascertain, but I was discouraged by the fear of injuring the fermenting liquor. It could not come from the fixed air only.

Having imagined that fixed air coagulated the blood in the lungs of animals, and thereby caused instant death; I suffocated a cat in this kind of air, and examining the lungs presently after, found them collapsed and white, having little or no blood in them.

In order to try the effect of this air upon the blood itself, I took a quantity from a fowl just killed, and divided it into two parts, holding one of them within the
the fixed air, and the other in the common air, and observed that the former was coagulated much sooner than the latter. This I could wish to have tried again.

Insects and animals which breathe very little are stifled in fixed air, but are not soon quite killed in it. Butterflies, and flies of other kinds, will generally become torpid, and seemingly dead, after being held a few minutes over the fermenting liquor; but they revive again after being brought into the fresh air. But there are very great varieties with respect to the time in which different kinds of flies will either become torpid in the fixed air, or die in it. A large strong frog was much swelled, and seemed to be nearly dead, after being held about six minutes over the fermenting liquor; but it recovered upon being brought into the common air. A snail treated in the same manner died presently.

Fixed air is presently fatal to vegetable life. At least sprigs of mint, growing in water, and placed over the fermenting liquor, will often become quite dead in one day, or even in a less space of time; nor do they recover when they are afterwards brought into the common air. I am told, however, that some other plants are much more hardy in this respect.

A red rose, fresh gathered, lost its redness, and became of a purple colour, after being held over the fermenting liquor about twenty-four hours; but the tips of each leaf were much more affected than the rest of it. Another red rose turned perfectly white in this situation; but various other flowers, of different colours, were very little affected. These experiments
periments were not repeated, as I wish they might be done, in pure fixed air, extracted from chalk by means of oil of vitriol.

For every purpose, in which it was necessary that the fixed air should be as unmixed as possible, I generally made it by pouring oil of vitriol upon chalk and water, catching it in a bladder, fastened to the neck of the phial, in which they were contained, taking care to press out all the common air, and also the first, and sometimes the second, produce of fixed air; and also, by agitation, making it as quickly as I possibly could. At other times, I made it pass from the phial in which it was generated through a glass tube, without the intervention of any bladder, which, as I found by experience, will not long make a sufficient separation between several kinds of air and common air.

I had once thought that the readiest method of procuring fixed air, and in sufficient purity, would be by the simple process of burning chalk, or pounded lime-stone in a gun-barrel, making it pass through the stem of a tobacco-pipe, or a glass tube carefully luted to the orifice of it; and in this manner I find that air is produced in great plenty; but, upon examining it, I found, to my very great surprize, that little more than one half of it was fixed air, capable of being absorbed by water; and that the rest was inflammable, sometimes very weakly, but sometimes pretty highly so. Whence this inflammability proceeds, I am not able to determine, the lime or chalk not being supposed to contain any other than fixed air. I conjecture, however, that it must proceed from the iron, and the separation of it from
from the calx may be promoted by that small quantity of oil of vitriol, which I am informed is contained in chalk, if not in lime-stone also. But it is an objection to this hypothesis, that the inflammable air produced in this manner burns blue, and not at all like that which is produced from iron, or any other metal, by means of an acid. It has also the smell of that kind of inflammable air which is produced from vegetable substances. Besides, oil of vitriol without water, will not dissolve iron; nor can inflammable air be got from it, unless the acid be considerably diluted; and when I mixed brimstone with the chalk, neither the quality nor the quantity of the air was changed by it. Indeed no air, or permanently elastic vapour, can be got from brimstone, or any oil.

In the method in which I generally made the fixed air, and indeed always, unless the contrary be particularly mentioned, viz. by diluted oil of vitriol and chalk, I found by experiment that it was as pure as Mr. Cavendish made it. For after it had passed through a large body of water in small bubbles, still or part only was not absorbed by water. In order to try this as expeditiously as possible, I kept pouring the air from one glass vessel into another, immered in a quantity of cold water, in which manner I found by experience, that almost all quantity may be reduced as far as possible in little more than a quarter of an hour.

At the same time that I was trying the purity of my fixed air, I had the curiosity to endeavour to ascertain whether that part of it which is not miscible in water, be equally diffused through the whole mass;
mafs; and, for this purpose, I divided a quantity of about a gallon into three parts, the first consisting of that which was uppermost, and the last of that which was the lowest, contiguous to the water; but all these parts were reduced in about an equal proportion, by passing through the water, so that the whole mass had been of an uniform composition. This I have also found to be the case with several kinds of air, which will not properly incorporate.

A mouse will live very well, though a candle will not burn, in the residuum of the purest fixed air that I can make; and I once made a very large quantity for the sole purpose of this experiment. This, therefore, seems to be one instance of the generation of genuine common air, though vitiated in some degree. It is also another proof of the residuum of fixed air being, in part at least, common air, that it becomes turbid, and is diminished by the mixture of nitrous air, as will be explained hereafter.

That fixed air only wants some addition to make it permanent, and immiscible with water, if not, in all respects, common air, I have been led to conclude, from several attempts which I once made to mix it with air, in which a quantity of iron filings and brimstone, made into a paste with water, had stood; for, in several mixtures of this kind, I imagined that not much more than half of the fixed air could be imbibed by water; but, not being able to repeat the experiment, I conclude that I either deceived myself in it, or that I overlooked some circumstance on which the success of it depended.

These experiments, however, whether they were fallacious or otherwise, induced me to try whether any
any alteration would be made in the constitution of fixed air, by this mixture of iron filings and brimstone. I therefore put a mixture of this kind into a quantity of as pure fixed air as I could make, and confined the whole in quicksilver, left the water should absorb it before the effects of the mixture could take place. The consequence was, that the fixed air was diminished, and the quicksilver rose in the vessel, till about the fifth part was occupied by it; and, as near as I could judge, the process went on, in all respects, as if the air in the inside had been common air.

What is most remarkable, in the result of this experiment, is, that the fixed air, into which this mixture had been put, and which had been in part diminished by it, was in part also rendered insoluble in water by this means. I made this experiment four times, with the greatest care, and observed, that in two of them about one sixth, and in the other two about one fourteenth, of the original quantity, was such as could not be absorbed by water, but continued permanently elastic. Left I should have made any mistake with respect to the purity of the fixed air, the last time that I made the experiment, I set part of the fixed air, which I made use of, in a separate vessel, and found it to be exceedingly pure, so as to be almost wholly absorbed by water; whereas the other part, to which I had put the mixture, was far from being so.

In one of these cases, in which fixed air was made immiscible with water, it appeared to be not very noxious to animals; but in another case, a mouse died in it pretty soon.
As the iron is reduced to a calx by this process, I once concluded, that it is phlogiston that fixed air wants, to make it common air; and, for any thing I yet know, this may be the case, though I am ignorant of the method of combining them; and when I calcined a quantity of lead in fixed air, in the manner which will be described hereafter, it did not seem to have been less soluble in water than it was before.

II.

On Air in which a Candle, or Brimstone, has Burned Out.

It is well known that flame cannot subsist long without change of air, so that the common air is necessary to it, except in the case of substances, into the composition of which nitre enters; for these will burn in vacuo, in fixed air, and even under water, as is evident in some rockets, which are made for this purpose. The quantity of air which even a small flame requires to keep it burning is prodigious. It is generally said, that an ordinary candle consumes, as it is called, about a gallon in a minute. Considering this amazing consumption of air, by fires of all kinds, volcanos’s, &c. it becomes a great object of philosophical inquiry, to ascertain what change is made in the constitution of the air by flame, and to discover what provision there is in nature for remedying the injury which the atmosphere receives by this means. Some of the following experiments will, perhaps, be thought to throw a little light upon the subject.
The diminution of the quantity of air in which a candle, or brimstone, has burned out, is various; but I imagine that, at a medium, it may be about one fifteenth, or one sixteenth, of the whole; about one third as much as by animals breathing it as long as they can, by animal or vegetable substances putrifying in it, by the calcination of metals, or by a mixture of steel filings and pounded brimstone standing in it.

I have sometimes thought, that flame disposes the common air to deposit the fixed air it contains; for if any lime-water be exposed to it, it immediately becomes turbid. This is the case, when wax candles, tallow candles, chips of wood, spirit of wine, aether, and every other substance which I have yet tried, except brimstone, is burned in a close glass vessel, standing in lime-water. This precipitation of fixed air (if this be the case) may be owing to something emitted from the burning bodies, which has a stronger affinity with the other constituent parts of the atmosphere.

If brimstone be burned in the same circumstances, the lime-water continues transparent, but still there may have been the same precipitation of the fixed part of the air; but that, uniting with the lime and the vitriolic acid, it forms a selenetic salt, which is soluble in water. Having evaporated a quantity of water thus impregnated, by burning brimstone a great number of times over it, a whitish powder remained, which had an acid taste; but repeating the experiment with a quicker evaporation, the powder had no acidity, but was very much like chalk. The burning of brimstone but once over a
quantity of lime-water, will affect it in such a manner, that breathing into it will not make it turbid, which otherwise it always presently does.

Dr. Hales supposed, that by burning brimstone repeatedly in the same quantity of air, the diminution would continue without end. But this I have frequently tried, and not found to be the case. Indeed, when the ignition has been imperfect in the first instance, a second firing of the same substance will increase the effect of the first, &c. but this progress soon ceases. In many cases of the diminution of air, the effect is not immediately apparent, even when it stands in water; for sometimes the bulk of air will not be much reduced, till it has passed several times through a quantity of water, which has thereby a better opportunity of absorbing that fluid part of the air, which had not been perfectly detached from the rest. I have sometimes found a very great reduction of a mass of air, in consequence of passing but once thorough cold water. If the air has stood in quicksilver, the diminution is generally inconsiderable, till it has undergone this operation, there not being any substance exposed to the air that could absorb any part of it.

I could not find any considerable alteration in the specific gravity of the air, in which candles, or brimstone, had burned out. I am satisfied, however, that it is not heavier than common air, which must have been manifest, if so great a diminution of the quantity had been owing, as Dr. Hales and others supposed, to the elasticity of the whole mass being impaired. After making several trials for this purpose, I concluded that air, thus diminished in bulk,
is rather lighter than common air, which favours the supposition of the fixed, or heavier part of the common air, having been precipitated.

An animal will live nearly, if not quite as long, in air in which candles have burned out, as in common air. This fact surprised me very greatly, having imagined that what is called the consumpation of air by flame, or respiration, to have been of the same nature; but I have since found, that this fact has been observed by many persons, and even so early as by Mr. Boyle. I have also observed, that air in which brimstone has burned, is not in the least injurious to animals, after the fumes, which at first make it very cloudy, have entirely subsided.

Having read, in the Memoirs of the Society at Turin, Vol. I. p. 41. that air in which candles had burned out was perfectly restored, so that other candles would burn in it again as well as ever, after having been exposed to a considerable degree of cold, and likewise after having been compressed in bladders (for the cold had been supposed to have produced this effect by nothing but condensation): I repeated these experiments, and did, indeed, find, that, when I compressed the air in bladders, as the Count de Saluce, who made the observation, had done, the experiment succeeded: but having had sufficient reason to distrust bladders, I compressed the air in a glass vessel standing in water; and then I found, that this process is altogether ineffectual for the purpose. I kept the air compressed much more, and much longer, than he had done, but without producing any alteration in it. I also find, that a greater degree of cold than that which he applied, and
of longer continuance, did by no means restore this kind of air: for when I have exposed the phials which contained it a whole night, in which the frost was very intense; and also when I kept it surrounded with a mixture of snow and salt, I found it, in all respects, the same as before.

It is also advanced, in the same Memoir, p. 41, that heat only, as the reverse of cold, renders air unfit for candles burning in it. But I repeated the experiment of the Count for that purpose, without finding any such effect from it. I also remember that, many years ago, I filled an exhausted receiver with air, that had passed through a glass tube made red-hot, and found that a candle would burn in it perfectly well. Also, rarefaction by the air-pump does not injure air in the least degree.

Though this experiment failed, I flatter myself that I have accidentally hit upon a method of restoring air which has been injured by the burning of candles, and that I have discovered at least one of the restoratives which nature employs for this purpose. It is vegetation. In what manner this process in nature operates, to produce so remarkable an effect, I do not pretend to have discovered; but a number of facts declare in favour of this hypothesis. I shall introduce my account of them, by reciting some of the observations which I made on the growing of plants in confined air, which led to this discovery.

One might have imagined that, since common air is necessary to vegetable, as well as to animal life, both plants and animals had affected it in the same manner, and I own I had that expectation, when
when I first put a sprig of mint into a glass-jar, standing inverted in a vessel of water; but when it had continued growing there for some months, I found that the air would neither extinguish a candle, nor was it at all inconvenient to a mouse, which I put into it.

The plant was not affected any otherwise than was the necessary consequence of its confined situation; for plants growing in several other kinds of air, were all affected in the very same manner. Every succession of leaves was more diminished in size than the preceding, till, at length, they came to be no bigger than the heads of pins. The root decayed, and the stalk also, beginning from the root; and yet the plant continued to grow upwards, drawing its nourishment through a black and rotten stem. In the third or fourth set of leaves, long hairy filaments grew from the insertion of each leaf, and sometimes from the body of the stem, shooting out as far as the vessel in which it grew would permit, which, in my experiments, was about two inches. In this manner a sprig of mint lived, the old stem decaying, and new ones shooting up in its place, but less and less continually, all the summer season.

In repeating this experiment, care must be taken to draw away all the dead leaves from about the plant, lest they should putrefy, and affect the air. I have found that a fresh cabbage leaf, put under a glass vessel filled with common air, for the space of one night only, has so far affected the air, that a candle would not burn in it the next morning, and yet the leaf had not acquired any smell of putrefaction.
Finding that candles burn very well in air in which plants had grown a long time, and having had some reason to think, that there was something attending vegetation, which restored air that had been injured by respiration, I thought it was possible that the same process might also restore the air that had been injured by the burning of candles.

Accordingly, on the 17th of August, 1771, I put a sprig of mint into a quantity of air, in which a wax candle had burned out, and found that, on the 27th of the same month, another candle burned perfectly well in it. This experiment I repeated, without the least variation in the event, not less than eight or ten times in the remainder of the summer. Several times I divided the quantity of air in which the candle had burned out, into two parts, and putting the plant into one of them, left the other in the same exposure, contained, also, in a glass vessel immersed in water, but without any plant; and never failed to find, that a candle would burn in the former, but not in the latter. I generally found that five or six days were sufficient to restore this air, when the plant was in its vigour; whereas I have kept this kind of air in glass vessels, immersed in water many months, without being able to perceive that the least alteration had been made in it. I have also tried a great variety of experiments upon it, as by condensing, rarefying, exposing to the light and heat, &c., and throwing into it the effluvia of many different substances, but without any effect.

Experiments made in the year 1772, abundantly confirmed my conclusion concerning the restoration of air, in which candles had burned out by plants growing
growing in it. The first of these experiments was made in the month of May; and they were frequently repeated in that and the two following months, without a single failure.

For this purpose I used the flames of different substances, though I generally used wax or tallow candles. On the 24th of June the experiment succeeded perfectly well with air in which spirit of wine had burned out, and on the 27th of the same month it succeeded equally well with air in which brimstone matches had burned out, an effect of which I had despaired the preceding year.

This restoration of air I found depended upon the vegetating state of the plant; for though I kept a great number of the fresh leaves of mint in a small quantity of air in which candles had burned out, and changed them frequently, for a long space of time, I could perceive no melioration in the state of the air.

This remarkable effect does not depend upon anything peculiar to mint, which was the plant that I always made use of till July 1772; for on the 16th of that month, I found a quantity of this kind of air to be perfectly restored by sprigs of balm, which had grown in it from the 7th of the same month.

That this restoration of air was not owing to any aromatic effluvia of these two plants, not only appeared by the essential oil of mint having no sensible effect of this kind; but from the equally complete restoration of this vitiated air by the plant called groundsel, which is usually ranked among the weeds, and has an offensive smell. This was the result of an experiment made the 16th of July, when the
plant had been growing in the burned air from the 8th of the same month. Besides, the plant which I have found to be the most effectual of any that I have tried for this purpose is spinach, which is of quick growth, but will seldom thrive long in water. One jar of burned air was perfectly restored by this plant in four days, and another in two days. This last was observed on the 22d of July. In general this effect may be presumed to have taken place in much less time than I have mentioned; because I never chose to make a trial of the air, till I was pretty sure, from preceding observations, that the event which I had expected must have taken place, if it would succeed at all; lest, returning back that part of the air on which I made the trial, and which would thereby necessarily receive a small mixture of common air, the experiment might not be judged to be quite fair; though I myself might be sufficiently satisfied with respect to the allowance that was to be made for that small imperfection.

III.

Of inflammable Air.

I have generally made inflammable air in the manner described by Mr. Cavendish, in the Philosophical Transactions, from iron, zinc, or tin; but chiefly from the two former metals, on account of the process being the least troublesome: but when I extracted it from vegetable or animal substances, or from coals, I put them into a gun barrel, to the orifice of which I luted a glass tube, or the stem of a to-
a tobacco pipe, and to the end of this I tied a flaccid bladder, in order to catch the generated air.

There is not, I believe, any vegetable or animal substance whatever, nor any mineral substance, that is inflammable, but what will yield great plenty of inflammable air, when they are treated in this manner, and urged with a strong heat; but, in order to get the most air, the heat must be applied as suddenly, and as vehemently, as possible. For, notwithstanding the same care be taken in luting, and in every other respect, six or even ten times more air may be got by a sudden heat than by a slow one, though the heat that is last applied be as intense as that which was applied suddenly. A bit of dry oak, weighing about twelve grains, will generally yield about a sheep's bladder full of inflammable air with a brisk heat, when it will only give about two or three ounce measures if the same heat be applied to it very gradually. To what this difference is owing, I cannot tell.

Inflammable air, when it is made by a quick process, has a very strong and offensive smell, from whatever substance it be generated; but this smell is of three different kinds, according as the air is extracted from mineral, vegetable, or animal substances. The last is exceedingly fetid; and it makes no difference, whether it be extracted from a bone, or even an old and dry tooth, or from soft muscular flesh, or any other part of the animal. The burning of any substance occasions the same smell: for the gross fume which arises from them, before they flame, is the inflammable air they contain, which is expelled by heat, and then readily ignited. The smell of in-
flammable air is the very same, as far as I am able to perceive, from whatever substance of the same kingdom it be extracted. Thus it makes no difference whether it be got from iron, zinc, or tin, from any kind of wood, or, as was observed before, from any part of an animal.

If a quantity of inflammable air be contained in a glass vessel standing in water, and have been generated very fast, it will smell even through the water, and this water will also soon become covered with a thin film, assuming all the different colours. If the inflammable air have been generated from iron, this matter will appear to be a red okre, or the earth of iron, as I have found by collecting a considerable quantity of it; and if it have been generated from zinc, it is a whitish substance, which I suppose to be the calx of the metal. It likewise settles to the bottom of the vessel, and when the water is stirred, it has very much the appearance of wool. When water is once impregnated in this manner, it will continue to yield this scum for a considerable time after the air is removed from it. This I have often observed with respect to iron.

Inflammable air, made by a violent effervescence, I have observed to be much more inflammable than that which is made by a weak effervescence, whether the water or the oil of vitriol prevailed in the mixture. Also the offensive smell was much stronger in the former case than in the latter. The greater degree of inflammability appeared by the greater number of successive explosions, when a candle was presented to the neck of a phial filled with it. It is possible, however, that this diminution of inflamability
flammability may, in some measure, arise from the air continuing so much longer in the bladder when it is made very slowly; though I think the difference is too great for this cause to have produced the whole of it. It may, perhaps, deserve to be tried by a different process, without a bladder.

Inflammable air is not thought to be miscible with water, and when kept many months, seems, in general, to be as inflammable as ever. Indeed, when it is extracted from vegetable or animal substances, a part of it will be imbibed by the water in which it stands; but it may be presumed, that in this case, there was a mixture of fixed air extracted from the substance along with it. I have indubitable evidence, however, that inflammable air, standing long in water, has actually lost all its inflammability, and even come to extinguish flame much more than that air in which candles have burned out. After this change it appears to be greatly diminished in quantity, and it still continues to kill animals the moment they are put into it.

This very remarkable fact first occurred to my observation on the twenty-fifth of May 1771, when I was examining a quantity of inflammable air, which had been made from zinc, near three years before. Upon this, I immediately set by a common quart bottle filled with inflammable air from iron, and another equal quantity from zinc; and examining them in the beginning of December following, that from the iron was reduced near one half in quantity, if I be not greatly mistaken; for I found the bottle half full of water, and I am pretty clear that it was full of air when it was set by. That which had been
been produced from zinc was not altered, and filled the bottle as at first.

Another instance of this kind occurred to my observation on the 19th of June 1772, when a quantity of air, half of which had been inflammable air from zinc, and half air in which mice had died, and which had been put together the 30th of July 1771, appeared not to be in the least inflammable, but extinguished flame, as much as any kind of air that I had ever tried. I think that, in all, I have had four instances of inflammable air losing its inflammability, while it stood in water.

Though air tainted with putrefaction extinguishes flame, I have not found that animals or vegetables putrefying in inflammable air render it less inflammable. But one quantity of inflammable air, which I had set by in May 1771, along with the others above mentioned, had had some putrid flesh in it; and this air had lost its inflammability, when it was examined at the same time with the other in the December following. The bottle in which this air had been kept, smelled exactly like very strong Harrowgate water. I do not think that any person could have distinguished them.

I have made plants grow for several months in inflammable air made from zinc, and also from oak; but, though the plants grew pretty well, the air still continued inflammable. The former, indeed, was not so highly inflammable as when it was fresh made, but the latter was quite as much so; and the diminution of inflammability in the former case, I attribute to some other cause than the growth of the plant.

No
No kind of air, on which I have yet made the experiment, will conduct electricity; but the colour of a spark is remarkably different in some different kinds of air, which seems to shew that they are not equally good non-conductors. In fixed air, the electric spark is exceedingly white; but in inflammable air it is of a purple, or red colour. Now, since the most vigorous sparks are always the whitest, and, in other cases, when the spark is red, there is reason to think that the electric matter passes with difficulty, and with less rapidity: it is possible that the inflammable air may contain particles which conduct electricity, though very imperfectly; and that the whiteness of the spark in the fixed air, may be owing to its meeting with no conducting particles at all. When an explosion was made in a quantity of inflammable air, it was a little white in the center, but the edges of it were still tinged with a beautiful purple. The degree of whiteness in this case was probably owing to the electric matter rushing with more violence in an explosion than in a common spark.

Inflammable air kills animals as suddenly as fixed air, and, as far as can be perceived, in the same manner, throwing them into convulsions, and thereby occasioning present death. I had imagined that, by animals dying in a quantity of inflammable air, it would in time become less noxious; but this did not appear to be the case; for I killed a great number of mice in a small quantity of this air, which I kept several months for this purpose, without its being at all sensibly mended; the last, as well as the first mouse, dying the moment it was put into it.

I once
I once imagined that, since fixed and inflammable air are the reverse of one another, in several remarkable properties, a mixture of them would make common air; and while I made the mixtures in bladders, I imagined that I had succeeded in my attempt; but I have since found that thin bladders do not sufficiently prevent the air that is contained in them from mixing with the external air. Also corks will not sufficiently confine different kinds of air, unless the phials in which they are confined be set with their mouths downwards, and a little water lie in the necks of them, which, indeed, is equivalent to the air standing in vessels immersed in water. In this manner, however, I have kept different kinds of air for several years.

Whatever methods I took to promote the mixture of fixed and inflammable air, they were all ineffectual. I think it my duty, however, to recite the issue of an experiment or two of this kind, in which equal mixtures of these two kinds of air had stood near three years, as they seem to shew that they had in part affected one another, in that long space of time. These mixtures I examined April 27, 1771. One of them had stood in quicksilver, and the other in a corked phial, with a little water in it. On opening the latter in water, the water instantly rushed in, and filled almost half of the phial, and very little more was absorbed afterwards. In this case the water in the phial had probably absorbed a considerable part of the fixed air, so that the inflammable air was exceedingly rarefied; and yet the whole quantity that must have been rendered non-elastic was ten times more than the bulk of the water, and it has not
not been found that water can contain much more than its own bulk of fixed air. But in other cases I have found the diminution of a quantity of air, and especially of fixed air, to be much greater than I could well account for by any kind of absorption.

The phial which had stood immersed in quicksilver had lost very little of its original quantity; and being now opened in water, and left there, along with another phial, which was just then filled, as this had been three years before, with air half inflammable and half fixed, I observed that the quantity of both was diminished, by the absorption of the water, in the same proportion.

Upon applying a candle to the mouths of the phials which had been kept three years, that which had stood in quicksilver went off at one explosion, exactly as it would have done if there had been a mixture of common air, with the inflammable. As a good deal depends upon the apertures of the vessels in which the inflammable air is fixed, I mixed the two kinds of air in equal proportion in the same phial, and after letting it stand some days in water, that the fixed air might be absorbed, I applied a candle to it; but it made ten or twelve explosions (shaking the phial after each of them) before the inflammable matter was exhausted.

The air which had been confined in the corked phial exploded in the very same manner as an equal mixture of the two kinds of air in the same phial, the experiment being made as soon as the fixed air was absorbed, as before; so that, in this case, the two kinds of air did not seem to have affected one another at all.

Vol. LXII. A a Con-
Considering inflammable air as air united to or loaded with phlogiston, I exposed it to several substances, which are said to have a near affinity with phlogiston, as oil of vitriol, and spirit of nitre (the former for above a month), but without making any sensible alteration in it.

I observed, however, that inflammable air, mixed with the fumes of smoking spirit of nitre, goes off at one explosion, exactly like a mixture of half common and half inflammable air. This I tried several times, by throwing the inflammable air into a phial full of spirit of nitre, with its mouth immersed in a basin containing some of the same spirit, and then applying the flame of a candle to the mouth of the phial, the moment that it was uncovered, after it had been taken out of the basin. This remarkable effect I hastily concluded to have arisen from the inflammable air having been in part deprived of its inflammability, by means of the stronger affinity, which the spirit of nitre had with phlogiston, and therefore I imagined that by letting them stand longer in contact, and especially by agitating them strongly together, I should deprive the air of all its inflammability; but neither of these operations succeeded, for still the air was only exploded at once, as before. And lastly, when I passed a quantity of inflammable air, which had been mixed with the fumes of spirit of nitre, through a body of water, and received it in another vessel, it appeared not to have undergone any change at all, for it went off in several successive explosions, like the purest inflammable air. The effect abovementioned must, therefore, have been owing to the fumes of the spirit of nitre supplying the
the place of common air for the purpose of ignition, which is analogous to other experiments with nitre.

Having had the curiosity, on the 25th of July 1772, to expose a great variety of different kinds of air to water out of which the air it contained had been boiled, without any particular view; the result was, in several respects, altogether unexpected, and led to a variety of new observations on the properties and affinities of several kinds of air with respect to water. Among the rest three fourths of that which was inflammable was absorbed by the water in about two days, and the remainder was inflammable, but weakly so.

Upon this, I began to agitate a quantity of strong inflammable air in a glass jar, standing in a pretty large trough of water, the surface of which was exposed to the common air, and I found that when I had continued the operation about ten minutes, near one fourth of the quantity of air had disappeared; and finding that the remainder made an effervescence with nitrous air, I concluded that it must have become fit for respiration, whereas this kind of air is, at the first, as noxious as any other kind whatever. To ascertain this, I put a mouse into a vessel containing 2½ ounce measures of it, and observed that it lived in it twenty minutes, which is as long as a mouse will generally live in the same quantity of common air. This mouse was even taken out alive, and recovered very well. Still also the air in which it had breathed so long was inflammable, though very weakly so. I have even found it to be so when a mouse has actually died in it.
Inflammable air thus diminished by agitation in water, makes but one explosion on the approach of a candle exactly like a mixture of inflammable air with common air.

From this experiment I concluded that, by continuing the same process, I should deprive inflammable air of all its inflammability, and this I found to be the case; for, after a longer agitation, it admitted a candle to burn in it, like common air, only more faintly; and indeed by the test of nitrous air, it did not appear to be near so good as common air. Continuing the same process still farther, the air which had been most strongly inflammable a little before, came to extinguish a candle, exactly like air in which a candle had burned out, nor could they be distinguished by the test of nitrous air.

I found, by repeated trials, that it was difficult to catch the time in which inflammable air obtained from metals, in coming to extinguish flame, was in the state of common air, so that the transition from the one to the other must be very short. I readily, however, found this state in a quantity of inflammable air extracted from oak, which air I had kept by me a year, and in which a plant had grown, though very poorly, for some part of the time. A quantity of this air, after being agitated in water till it was diminished about one half, admitted a candle to burn in it exceedingly well, and was even hardly to be distinguished from common air by the test of nitrous air.

I took some pains to ascertain the quantity of diminution, in fresh made and very highly inflammable air from iron, at which it ceased to be inflammable,
mable, and, upon the whole, I concluded that it was so when it was diminished a little more than one half: for a quantity which was diminished exactly one half had something inflammable in it, but in the slightest degree imaginable.

Finding that water would imbibe inflammable air, I endeavoured to impregnate water with it, by the same process by which I had made water imbibe fixed air; but though I found that distilled water would imbibe about one fourteenth of its bulk of inflammable air, I could not perceive that the taste of it was sensibly altered.

IV.

Of Air infected with animal respiration, or putrefaction.

That candles will burn only a certain time, is a fact not better known, than it is that animals can live only a certain time, in a given quantity of air; but the cause of the death of the animal is not better known than that of the extinction of flame in the same circumstances; and when once any quantity of air has been rendered noxious by animals breathing in it as long as they could, I do not know that any methods have been discovered of rendering it fit for breathing again. It is evident, however, that there must be some provision in nature for this purpose, as well as for that of rendering the air fit for sustaining flame; for without it the whole mass of the atmosphere would, in time, become unfit for the purposes of animal life; and yet there is no reason to think that it is, at present, at all less fit for respiration than it
it has ever been. I flatter myself, however, that I have hit upon two of the methods employed by nature for this great purpose. How many others there may be, I cannot tell.

When animals die upon being put into air in which other animals have died, after breathing in it as long as they could, it is plain that the cause of their death is not the want of any pabulum vitae, which has been supposed to be contained in the air, but on account of the air being impregnated with something stimulating to their lungs; for they almost always die in convulsions, and are sometimes affected so suddenly, that they are irrecoverable after a single inspiration, though they be withdrawn immediately, and every method has been taken to bring them to life again. They are affected in the same manner, when they are killed in any other kind of noxious air that I have tried, viz. fixed air, inflammable air, air filled with the fumes of brimstone, infected with putrid matter, in which a mixture of iron filings and brimstone has stood, or in which charcoal has been burned, or metals calcined, or in nitrous air, &c.

If a mouse (which is an animal that I have commonly made use of for the purpose of these experiments) can stand the first shock of this stimulus, or has been habituated to it by degrees, it will live a considerable time in air in which other mice will die instantaneously. I have frequently found that when a number of mice have been confined in a given quantity of air, less than half the time that they have actually lived in it, a fresh mouse has been instantly thrown into convulsions, and died upon being put to them. It is evident, therefore, that if the
the experiment of the Black Hole were to be repeated, a man would stand the better chance of surviving it, who should enter at the first, than at the last hour. I have also observed, that young mice will always live much longer than old ones, or than those which are full grown, when they are confined in the same quantity of air. I have sometimes known a young mouse to live six hours in the same circumstances in which an old mouse has not lived one. On these accounts, experiments with mice, and, for the same reason, no doubt, with other animals also, have a considerable degree of uncertainty attending them; and therefore, it is necessary to repeat them frequently, before the result can be absolutely depended upon.

The discovery of the provision in nature for restoring air, which has been injured by the respiration of animals, having long appeared to me to be one of the most important problems in natural philosophy, I have tried a great variety of schemes in order to effect it. In these, my guide has generally been to consider the influences to which the atmosphere is, in fact, exposed; and, as some of my unsuccessful trials may be of use to those who are disposed to take pains in the farther investigation of this subject, I shall mention the principal of them.

The noxious effluvium with which air is loaded by animal respiration, is not absorbed by standing without agitation in fresh or salt water. I have kept it many months in fresh water, when, instead of being meliorated, it has seemed to become even more deadly, so as to require more time to restore it, by the methods which will be explained hereafter, than
air which has been lately made noxious. I have even spent several hours in pouring this air from one glass vessel into another, in water, sometimes as cold, and sometimes as warm, as my hands could bear it, and have sometimes also wiped the vessels many times, during the course of the experiment, in order to take off that part of the noxious matter, which might adhere to the glass vessels, and which evidently gave them an offensive smell; but all these methods were generally without any sensible effect. The motion, also, which the air received in these circumstances, it is very evident, was of no use for this purpose.

This kind of air is not restored by being exposed to the light, or by any other influence to which it is exposed, when confined in a thin phial, in the open air, for some months.

Among other experiments, I tried a great variety of different effluvia, which are continually exhaling into the air, especially of those substances which are known to resist putrefaction; but I could not by these means effect any melioration of the noxious quality of this kind of air.

Having read, in the Memoirs of the Imperial Society, of a plague not afflicting a particular village, in which there was a large sulphur work, I immediately fumigated a quantity of this kind of air; or (which will hereafter appear to be the very same thing) air tainted with putrefaction, with the fumes of burning brimstone, but without any effect.

I once imagined, that the nitrous acid in the air might be the general restorative which I was in quest of; and the conjecture was favoured, by finding
ing that candles would burn, and animals live, in air extracted from saltpetre. I therefore spent a good deal of time in attempting, by a burning-glass, and other means, to impregnate this noxious air with some effluvium of saltpetre, and, with the same view, introduced into it the fumes of the smoking spirit of nitre; but both these methods were altogether ineffectual.

In order to try the effect of heat, I put a quantity of air, in which mice had died, into a bladder, tied to the end of the stem of a tobacco-pipe, at the other end of which was another bladder; out of which the air was carefully pressed. I then put the middle part of the stem into a chafing-dish of hot coals, strongly urged with a pair of bellows; and, pressing the bladders alternately, I made the air pass several times through the heated part of the pipe. I have also made this kind of air very hot, standing in water before the fire. But neither of these methods were of any use.

Rarefaction and condensation by instruments were also tried, but in vain.

Thinking it possible that the earth might imbibe the noxious quality of the air, and thence supply the roots of plants with such putrescent matter as is known to be nutritive to them, I kept a quantity of air, in which mice had died, in a phial, one half of which was filled with fine garden mould; but, though it stood two months in these circumstances, it was not the better for it.

I once imagined that, since several kinds of air cannot be long separated from common air, by being confined in bladders, in bottles well corked, or even...
closed with ground stoppers, the affinity between this noxious air and the common air might be so great, that they would mix through a body of water interposed between them; the water continually receiving from the one, and giving to the other, especially as water receives some kinds of impregnation from, I believe, every kind of air to which it is contiguous; but I have seen no reason to conclude, that a mixture of any kind of air with the common air can be produced in this manner. I have kept air in which mice have died, air in which candles have burned out, and inflammable air, separated from the common air, by the slightest partition of water that I could well make, so that it might not evaporate in a day or two, if I should happen not to attend to them; but I found no change in them after a month or six weeks. The inflammable air was still inflammable, mice died instantaneously in the air in which other mice had died before, and candles would not burn where they had burned out before.

Since air tainted with animal or vegetable putrefaction is the same thing with air rendered noxious by animal respiration, I shall now recite the observations which I have made upon this kind of air, before I treat of the method of restoring them.

That these two kinds of air are, in fact, the same thing, I conclude from their having several remarkable common properties, and from their differing in nothing that I have been able to observe. They equally extinguish flame, they are equally noxious to animals, they are equally, and in the same way, offensive to the smell, they are equally diminished,
in their quantity, they equally precipitate in lime-water, and they are restored by the same means.

Since air which has passed through the lungs is the same thing with air tainted with animal putrefaction, it is probable that one use of the lungs is to carry off a putrid effluvium, without which, perhaps, a living body might putrefy as soon as a dead one.

When a mouse putrefies in any given quantity of air, the bulk of it is generally increased for a few days; but in a few days more it begins to shrink up, and generally, in about eight or ten days, if the weather be pretty warm, it will be found to be diminished \(\frac{1}{6} \), or \(\frac{1}{5} \) of its bulk. If it do not appear to be diminished after this time, it only requires to be passed through water, and the diminution will not fail to be sensible. I have sometimes known almost the whole diminution to take place, upon once or twice passing through the water. The same is the case with air, in which animals have breathed as long as they could. Also, air in which candles have burned out may almost always be farther reduced by this means. All these processes, as I observed before, seem to dispose the compound mass of air to part with some constituent part belonging to it; and this being miscible with water, must be brought into contact with it, in order to mix with it to the most advantage, especially when its union with the other constituent principles of the air is but partially broken.

I have put mice into vessels which had their mouths immersed in quicksilver, and observed that the air was not much contracted after they were dead or cold; but upon withdrawing the mice, and admitting.
lime-water to the air it immediately became turbid, and was contracted in its dimensions as usual.

I tried the same thing with air tainted with putrefaction, putting a dead mouse to a quantity of common air, in a vessel which had its mouth immersed in quicksilver, and after a week I took the mouse out, drawing it through the quicksilver, and observed that for some time there was an apparent increase of the air perhaps about \(\frac{1}{20} \). After this, it stood two days in the quicksilver, without any sensible alteration; and then admitting water to it, it began to be absorbed, and continued so, till the original quantity was diminished about \(\frac{1}{2} \). If, instead of common water, I had made use of lime water in this experiment, I make no doubt but it would have become turbid.

If a quantity of lime-water in a phial be put under a glass vessel standing in water, it will not become turbid, and provided the access of the common air be prevented, it will continue lime-water, I do not know how long; but if a mouse be left to putrefy in the vessel, the water will deposit all its lime in a few days. This may be owing to the fixed air being transferred from the putrid mouse into the water, and yet it is evident that there is a putrid effluvium entirely distinct from this kind of air, and which has very different properties.

It is a doubt with me, however, whether the putrid effluvium be not chiefly fixed air, with the addition of some other effluvium, which has the power of diminishing common air. The resemblance between the true putrid effluvium and fixed air in the following experiment, which is as decisive as
as I can possibly contrive it, appeared to be very great; indeed, much greater than I had expected. I put a dead mouse into a tall glass vessel, and having filled the remainder with quicksilver, and set it, inverted, in a pot of quicksilver, I let it stand about two months, in which time the putrid effluvium issuing from the mouse had filled the whole vessel, and part of the dissolved blood, which lodged upon the surface of the quicksilver, began to be thrown out. I then filled another glass vessel, of the same size and shape, with as pure fixed air as I could make, and exposed them both, at the same time, to a quantity of lime-water. In both cases the water grew turbid alike, it rose equally fast in both the vessels, and likewise equally high; so that about the same quantity remained unabsoled by the water. One of these kinds of air, however, was exceedingly sweet and pleasing, and the other insufferably offensive; one of them also would have made an addition to any quantity of common air with which it had been mixed, and the other would have diminished it. This, at least, would have been the consequence, if the mouse itself had putrefied in any quantity of air.

It seems to depend, in some measure, upon the time, and other circumstances, in the dissolution of animal or vegetable substances, whether they yield the proper putrid effluvium, or fixed, or inflammable air; but the experiments which I have made upon this subject, have not been numerous enough to enable me to decide with certainty concerning those circumstances. Putrid cabbage, green, or boiled, infects the air in the very same manner as putrid animal substances. Air thus tainted is equally contracted in...
in its dimensions, it equally extinguishes flame, and is equally noxious to animals; but they affect the air very differently if the heat that is applied to them be considerable. If beef or mutton, raw, or boiled, be placed so near to the fire, that the heat to which it is exposed shall equal, or rather exceed, that of the blood, a considerable quantity of air will be generated in a day or two, about \(\frac{1}{4} \)th of which I have generally found to be absorbed by water, while all the rest was inflammable; but air generated from vegetables, in the same circumstances, will be almost all fixed, and no part of it inflammable. This I have repeated again and again, the whole process being in quicksilver; so that neither common air, nor water, had any access to the substance on which the experiment was made; and the generation of air, or effluvium of any kind, except what might be absorbed by quicksilver, or resorbed by the substance itself, might be distinctly noted.

A vegetable substance, after standing a day or two in these circumstances, will yield nearly all the air that can be extracted from it, in that degree of heat; whereas an animal substance will continue to give more air or effluvium, of some kind or other, with very little alteration, for many weeks. It is remarkable, however, that though a piece of beef or mutton, plunged in quicksilver, and kept in this degree of heat, yield air, the bulk of which is inflammable, and contracts no putrid smell (at least, in a day or two), a mouse treated in the same manner, yields the proper putrid effluvium, as, indeed the smell sufficiently indicates; and this effluvium does either
either itself extinguish flame, or has in it such a mixture of fixed air, as to give it that property.

That the putrid effluvium will mix with water seems to be evident from the following experiment. If a mouse be put into a jar full of water, standing with its mouth inverted in another vessel of water, a considerable quantity of elastic matter (and which may, therefore, be called air) will soon be generated, unless the weather be so cold as to check all putrefaction. After a short time, the water contracts an extremely fetid and offensive smell, which seems to indicate that the putrid effluvium pervades the water, and affects the neighbouring air; and since, after this, there is often no increase of the air, that seems to be the very substance which is carried off through the water, as fast as it is generated; and the offensive smell is a sufficient proof that it is not fixed air. For this has a very agreeable flavour, whether it be produced by fermentation, or extracted from chalk by oil of vitriol; affecting not only the mouth, but even the nostrils, with a pungency which is peculiarly pleasing to a certain degree, as any person may easily satisfy himself who will choose to make the experiment. If the water in which the mouse was immersed, and which is saturated with the putrid air, be changed, the greater part of the putrid air will, in a day or two, be absorbed, though the mouse continues to yield the putrid effluvium as before; for as soon as this fresh water becomes saturated with it, it begins to be offensive to the smell, and the quantity of the putrid air upon its surface increases as before. I kept a mouse producing putrid air in this manner for the space of several months.
Six ounce measures of air not readily absorbed by water, appeared to have been generated from one mouse, which had been putrefying eleven days in confined air, before it was put into a jar which was quite filled with water, for the purpose of this observation.

Air thus generated from putrid mice standing in water, without any mixture of common air, extinguishes flame, and is noxious to animals, but not more so than common air only tainted with putrefaction. It is exceedingly difficult and tedious to collect a quantity of this putrid air, not miscible in water, so very great a proportion of what is collected being absorbed by the water, in which it is kept; but what that proportion is, I have not endeavoured to ascertain.

Though a quantity of air be diminished by any substance putrefying in it, I have not yet found the same effect to be produced by a mixture of putrid air with common air; but, in the manner in which I have hitherto made the experiment, I was obliged to let the putrid air pass through a body of water; which might instantaneously absorb whatever it was in the putrid substance, that diminished the common air.

Insects of various kinds live perfectly well in air tainted with animal or vegetable putrefaction, when a single inspiration of it would have instantly killed any animal. I have frequently tried the experiment with flies and butterflies. I have also observed, that the aphides will thrive as well upon plants growing in this kind of air, as in the open air. I have even been frequently obliged to take plants out of the putrid air in which they were growing, on purpose to brush away the swarms of these
these insects which infected them; and yet so effectually did some of them conceal themselves, and so fast did they multiply, in these circumstances, that I could seldom keep the plants quite clear of them.

When air has been freshly and strongly tainted with putrefaction, so as to smell through the water, sprigs of mint have presently died, upon being put into it, their leaves turning black; but if they do not die presently, they thrive in a most surprizing manner. In no other circumstances have I ever seen vegetation so vigorous as in this kind of air, which is immediately fatal to animal life. Though these plants have been crowded in jars filled with this air, every leaf has been full of life; fresh shoots have branched out in various directions, and have grown much faster than other similar plants, growing in the same exposure in common air.

This observation led me to conclude, that plants, instead of affecting the air in the same manner with animal respiration, reverse the effects of breathing, and tend to keep the atmosphere sweet and wholesome, when it is become noxious, in consequence of animals living and breathing, or dying and putrefying in it.

In order to ascertain this, I took a quantity of air, made thoroughly noxious, by mice breathing and dying in it, and divided it into two parts; one of which I put into a phial immersed in water; and to the other (which was contained in a glass jar, standing in water) I put a sprig of mint. This was about the beginning of August 1771, and after eight or nine days, I found that a mouse lived perfectly well.

Vol. LXII.
in that part of the air, in which the sprig of mint had grown, but died the moment it was put into the other part of the same original quantity of air; and which I had kept in the very same exposure, but without any plant growing in it.

This experiment I have several times repeated; sometimes using air, in which animals had breathed and died; sometimes using air tainted with vegetable or animal putrefaction, and generally with the same success.

Once, I let a mouse live and die in a quantity of air, which had been noxious, but which had been restored by this process, and it lived nearly as long as I conjectured it might have done in an equal quantity of fresh air; but, this is so exceedingly various, that it is not easy to form any judgment from it; and in this case the symptom of difficult respiration seemed to begin earlier than it would have done in common air.

Since the plants that I made use of manifestly grow and thrive in putrid air; since putrid matter is well known to afford proper nourishment for the roots of plants; and since it is likewise certain that they receive nourishment by their leaves as well as by their roots, it seems to be exceedingly probable, that the putrid effluvium is in some measure extracted from the air, by means of the leaves of plants, and therefore that they render the remainder more fit for respiration.

Towards the end of the year some experiments of this kind did not answer so well as they had done before, and I had instances of the relapsing of this restored air to its former noxious state. I therefore suspended
suspended my judgment concerning the efficacy of plants to restore this kind of noxious air, till I should have an opportunity of repeating my experiments, and giving more attention to them. Accordingly I resumed the experiments in the summer of the year 1772, when I presently had the most indisputable proof of the restoration of putrid air by vegetation; and as the fact is of some importance, and the subsequent variation in the state of this kind of air is a little remarkable; I think it necessary to relate some of the facts pretty circumstantially.

The air, on which I made the first experiments, was rendered exceedingly noxious by mice dying in it on the 20th of June. Into a jar nearly filled with one part of this air, I put a sprig of mint, while I kept another part of it in a phial, in the same exposure; and on the 27th of the same month, and not before, I made a trial of it, by introducing a mouse into a glass vessel, containing \(2\frac{1}{2}\) ounce measures filled with each kind of air; and I noted the following facts.

When the vessel was filled with the air in which the mint had grown, a very large mouse lived five minutes in it, before it began to shew any sign of uneasiness. I then took it out, and found it to be as strong and vigorous as when it was first put in; whereas in that air which had been kept in the phial only, without a plant growing in it, a younger mouse continued not longer than two or three seconds, and was taken out quite dead. It never breathed after, and was immediately motionless. After half an hour, in which time the larger mouse
(which I had kept alive, that the experiment might be made on both the kinds of air with the very same animal) would have been sufficiently recruited, supposing it to have received any injury by the former experiment, was put into the same vessel of air; but though it was withdrawn again, after being in it hardly one second, it was recovered with difficulty, not being able to stir from the place for near a minute. After two days, I put the same mouse into an equal quantity of common air, and observed that it continued seven minutes without any sign of uneasiness; and being very uneasy after three minutes longer, I took it out. Upon the whole, I concluded that the restored air wanted about one fourth of being as wholesome as common air. The same thing also appeared when I applied the test of nitrous air.

In the seven days, in which the mint was growing in this jar of noxious air, three old shoots had extended themselves about three inches, and several new ones had made their appearance in the same time. Dr. Franklin and Sir John Pringle happened to be with me, when the plant had been three or four days in this state, and took notice of its vigorous vegetation, and remarkably healthy appearance in that confinement.

On the 30th of the same month, a mouse lived fourteen minutes, breathing naturally all the time, and without appearing to be much uneasy, till the last two minutes, in air which had been rendered noxious by mice breathing in it almost a year before, and which I had found to be most highly noxious on the 19th of this month, a plant having grown in it, but
but not exceedingly well, these eleven days; on which account, I had deferred making the trial so long. This restored air was affected by a mixture of nitrous air, almost as much as common air.

As this putrid air was thus easily restored to a considerable degree of fitness for respiration, by plants growing in it, I was in hopes that by the same means it might in time be so much more perfectly restored, that a candle would burn in it; and for this purpose I kept plants growing in the jars which contained this air till the middle of August following, but did not take sufficient care to pull out all the old and rotten leaves. The plants, however, had grown, and looked so well upon the whole, that I had no doubt but that the air must constantly have been in a mending state; when I was exceedingly surprized to find, on the 24th of that month, that though the air in one of the jars had not grown worse, it was no better, and that the air in the other jar was so much worse than it had been, that a mouse would have died in it in a few seconds. It also made no effervecence with nitrous air, as it had done before.

Suspecting that the same plant might be capable of restoring putrid air to a certain degree only, or that plants might have a contrary tendency in some stages of their growth, I withdrew the old plant, and put a fresh one in its place; and found that, after seven days, the air was restored to its former wholesome state. This fact I consider as a very remarkable one, and well deserving of a farther investigation, as it may throw more light upon the principles of vegetation. It is not, however,
a single fact; for I had several instances of the same kind in the preceding year; but it seemed so very extraordinary, that air should grow worse by the continuance of the same treatment by which it had grown better, that, whenever I observed it, I concluded that I had not taken sufficient care to satisfy myself of its previous restoration.

That plants are capable of perfectly restoring air injured by respiration, may, I think, be inferred with certainty from the perfect restoration, by this means, of air which had passed through my lungs, so that a candle would burn in it again, though it had extinguished flame before, and a part of the same original quantity of air still continued to do so. Of this one instance occurred in the year 1771, a sprig of mint having grown in a jar of this kind of air, from the 25th of July to the 17th of August following; and another trial I made with the same success the 7th of July 1772, the plant having grown in it from the 29th of June preceding. In this case also I found that the effect was not owing to any virtue in the leaves of mint; for I kept them constantly changed in a quantity of this kind of air, for a considerable time, without making any sensible alteration in it.

These proofs of a partial restoration of air by plants in a state of vegetation, though in a confined and unnatural situation, cannot but render it highly probable, that the injury which is continually done to the atmosphere by the respiration of such a number of animals, and the putrefaction of such masses of both vegetable and animal matter, is, in part at least, repaired by the vegetable creation.

And,
And, notwithstanding the prodigious mass of air that is corrupted daily by the abovementioned causes; yet, if we consider the immense profusion of vegetables upon the face of the earth, growing in places suited to their nature, and consequently at full liberty to exert all their powers, both inhaling and exhaling, it can hardly be thought, but that it may be a sufficient counterbalance to it, and that the remedy is adequate to the evil.

Dr. Franklin, who, as I have already observed, saw some of my plants in a very flourishing state, in highly noxious air, was pleased to express very great satisfaction with the result of the experiments. In his answer to the letter in which I informed him of it, he says,

"That the vegetable creation should restore the air which is spoiled by the animal part of it, looks like a rational system, and seems to be of a piece with the rest. Thus fire purifies water all the world over. It purifies it by distillation, when it raises it in vapours, and lets it fall in rain; and farther still by filtration, when, keeping it fluid, it suffers that rain to percolate the earth. We knew before, that putrid animal substances were converted into sweet vegetables, when mixed with the earth, and applied as manure; and now, it seems, that the same putrid substances, mixed with the air, have a similar effect. The strong thriving state of your mint in putrid air seems to shew that the air is mended by taking something from it, and not by adding to it." He adds, "I hope this will give some check to the rage of destroying trees..."
"that grow near houses, which has accompanied
our late improvements in gardening, from an
opinion of their being unwholesome. I am cer-
tain, from long observation, that there is no-
thing unhealthy in the air of woods; for we
Americans have everywhere our country habi-
tations in the midst of woods, and no people on
earth enjoy better health, or are more prolific."

Having rendered inflammable air perfectly in-
noxious by continued agitation in a trough of water,
deprived of its air, I concluded that other kinds of
noxious air might be restored by the same means;
and I presently found that this was the case with
putrid air, even of more than a year's standing. I
shall observe once for all, that this process has nev-
er failed to restore any kind of noxious air on
which I have tried it, viz. air injured by respira-
tion or putrefaction, air infected with the fumes
of burning charcoal, and of calcined metals, air
in which a mixture of iron filings and brimstone,
or that in which paint made of white lead and oil
has stood, or air which has been diminished by a
mixture of nitrous air. Of the remarkable effect
which this process has on nitrous air itself, an ac-
count will be given in its proper place.

If this process be made in water deprived of air,
either by the air pump, by boiling, by distillation,
or if fresh rain water be used, the air will always
be diminished by the agitation; and this is cer-
tainly the fairest method of making the experi-
ment. If the water be fresh pump water, there
will always be an increase of the air by agitation,
the air contained in the water being set loose, and
joining
Joining that which is in the jar. In this case, also, the air has never failed to be restored; but then it might be suspected that the melioration was produced by the addition of some more wholesome ingredient. As these agitations were made in jars with wide mouths, and in a trough which had a large surface exposed to the common air, I take it for granted that the noxious effluvia, whatever they be, were first imbibed by the water, and thereby transmitted to the common atmosphere. In some cases this was sufficiently indicated by the disagreeable smell which attended the operation.

After I had made these experiments, I was informed that an ingenious physician and philosopher had kept a fowl alive twenty-four hour, in a quantity of air in which another fowl of the same size had not been able to live longer than an hour, by contriving to make the air, which it breathed, pass through no very large quantity of acidulated water, the surface of which was not exposed to the common air; and that even when the water was not acidulated, the fowl lived much longer than it could have done, if the air which it breathed had not been drawn through the water. As I should not have concluded that this experiment would have succeeded so well, from any observations that I had made upon the subject, I took a quantity of air in which mice had died, and agitated it very strongly, first in about five times its own quantity of distilled water, in the manner in which I had impregnated water with fixed air; but though the operation was continued a long time, it made no sensible change in the properties of the air. I also repeated the operation with
pump water, but with as little effect. In this case, however, though the air was agitated in a phial, which had a narrow neck, the surface of the water in the basin was considerably large, and exposed to the common atmosphere, which must have tended a little to favour the experiment. In order to judge more precisely of the effect of these different methods of agitating air, I transferred the very noxious air, which I had not been able to amend in the least degree by the former method, into an open jar, standing in a trough of water; and when I had agitated it till it was diminished about one third, I found it to be better than air, in which candles had burned out, as appeared by the test of the nitrous air; and a mouse lived in 2½ ounce measures of it a quarter of an hour, and was not sensibly affected the first ten or twelve minutes.

In order to determine whether the addition of any acid to the water, would make it more capable of restoring putrid air, I agitated a quantity of it in a phial containing very strong vinegar; and after that in aqua fortis, only half diluted with water; but, by neither of these processes was the air at all mended, though the agitation was repeated at intervals during a whole day, and it was moreover allowed to stand in that situation all night.

Since, however, water in these experiments must have imbibed and retained a certain portion of the noxious effluvia, before they could be transmitted to the external air, I do not think it improbable but that the agitation of the sea and large lakes may be of some use for the purification of the atmosphere, and the putrid matter contained in water may be imbibed
imbibed by aquatic plants, or be deposited in some other manner.

Having found, by several experiments above-mentioned, that the proper putrid effluvium is something quite distinct from fixed air, and finding, by the experiments of Dr. Macbride, that fixed air corrects putrefaction; I once concluded that this effect was produced, not by stopping the flight of the fixed air, or restoring to the putrefying substance the very same thing that had escaped from it; and which was the common vinculum of all its parts (which is that ingenious author's hypothesis) but by an affinity between the fixed air and the putrid effluvium. It therefore occurred to me, that fixed air, and air tainted with putrefaction, though equally noxious when separate, might make a wholesome mixture, the one correcting the other; and I was confirmed in this opinion by, I believe, not less than fifty or sixty instances, in which air, that had been made in the highest degree noxious, by respiration or putrefaction, was so far sweetened, by a mixture of about four times as much fixed air that afterwards mice lived in it exceedingly well, and in some cases almost as long as in common air. I found it, indeed, to be more difficult to restore old putrid air by this means; but I hardly ever failed to do it, when the two kinds of air had stood a long time together, by which I mean about a fortnight or three weeks.

The reason why I do not absolutely conclude that the restoration of air in these cases was the effect of fixed air, is that, when I made a trial of the mixture, I sometimes agitated the two kinds.
of air pretty strongly together, in a trough of water, or at least passed it several times through the water, from one jar to another, that the superfluous fixed air might be absorbed, not suspecting at that time that the agitation could have any other effect; but having since found that very violent, and especially long continued agitation in water, without any mixture of fixed air, never failed to render any kind of noxious air, in some measure, fit for respiration (and in one particular instance the mere transferring of the air from one vessel to another through the water, though for a much longer time than I ever used for the mixtures of air, was of considerable use for the same purpose); I began to entertain some doubt of the efficacy of fixed air, for that purpose. In some cases also the mixture of fixed air had by no means so much effect on the putrid air as, from the generality of my observations, I should have expected.

I was always aware, indeed, that it might be said, that, the residuum of fixed air not being very noxious, such an addition must contribute to mend the putrid air; but, in order to obviate this objection, I once mixed the residuum of as much fixed air as I had found, by a variety of trials, to be sufficient to restore a given quantity of putrid air, with an equal quantity of putrid air, without making any sensible melioration of it.

Upon the whole, I am inclined to think that this process could hardly have succeeded so well as it did with me, and in so great a number of trials, unless fixed air have some tendency to correct air tainted with respiration or putrefaction; and it is perfectly
perfectly agreeable to the analogy of Dr. Macbride’s discoveries, and may naturally be expected from them, that it should have such an effect.

By a mixture of fixed air I have made wholesome the residuum of air generated by putrefaction only, from mice plunged in water. This, one would imagine, a priori, to be the most noxious of all kinds of air. For if common air only tainted with putrefaction be so deadly, much more might one expect that air to be so, which was generated from putrefaction only; but it seems to be nothing more than common air tainted with putrefaction, and therefore requires no other process to sweeten it. In this case, however, we seem to have an instance of the generation of genuine common air, though mixed with something that is foreign to it. Perhaps the residuum of fixed air may be another instance of the same nature.

Fixed air is equally diffused through the whole mass of any quantity of putrid air with which it is mixed; for dividing the mixture into two equal parts, they were reduced in the same proportion by passing through water. But this is also the case with some of the kinds of air which will not incorporate, as inflammable air, and air in which brimstone has burned.

If fixed air tend to correct air which has been injured by animal respiration or putrefaction, lime-kilns, which discharge great quantities of fixed air, may be wholesome in the neighbourhood of populous cities, the atmosphere of which must abound with putrid effluvia. I should think also that physicians might avail themselves of the application of
of fixed air in many putrid disorders, especially as it may be so easily administered by way of clyster, where it would often find its way to much of the putrid matter. Nothing is to be apprehended from the distention of the bowels by this kind of air, since it is so readily absorbed by any fluid or moist substance. Since fixed air is not noxious per se, but, like fire, only in excess, I do not think it at all hazardous to attempt to breathe it. It is however easily conveyed into the stomach, in natural or artificial Pyrmont water, in briskly fermenting liquors, or a vegetable diet. It is possible, however, that a considerable quantity of fixed air might be imbibed by the absorbing vessels of the skin, if the whole body, except the head, should be suspended over a vessel of strongly fermenting liquor; and in some putrid disorders this treatment might be very salutary. If the body was exposed quite naked, there would be very little danger from the cold in this situation, and the air having freer access to the skin might produce a greater effect. Being no physician, I run no risk by throwing out these random, and perhaps whimsical, proposals.

Having communicated my observations on fixed air, and especially my scheme of applying it by way of clyster in putrid disorders, to Mr. Hey, an ingenious surgeon in this town, a case presently occurred, in which he had an opportunity of giving it a trial; and mentioning it to Dr. Hird and Dr. Crowther, two physicians who attended the patient, they approved the scheme, and it was put in execution: both by applying the fixed air by way of clyster, and at the same time making the patient
patient drink plentifully of liquors strongly impregnated with it. The event was such, that I requested Mr. Hey. to draw up a particular account of the case, describing the whole of the treatment, that the public might be satisfied that this new application of fixed air is perfectly safe, and also have an opportunity of judging how far it had the effect which I expected from it; and as the application is new, and not unpromising, I shall beg leave to subjoin his letter to me on the subject, by way of Appendix to these papers.

V.

Of Air in which a Mixture of Brimstone and Filings of Iron has stood.

Finding in Dr. Hales's account of his experiments, that there was a great diminution of the quantity of air in which a mixture of powdered brimstone and filings of iron, made into a paste with water, had stood, I repeated the experiment, and found the diminution greater than I had expected. The diminution of air by this process is made as effectually, and as expeditiously, in quicksilver as in water; and it may be measured with the greatest accuracy, because there is neither any previous expansion nor increase of the quantity of air, and because it is some time before it begins to have any sensible effect. The diminution of air by this process is various; but I have generally
generally found it to be between $\frac{4}{10}$ and $\frac{1}{3}$ of the whole.

Air thus diminished is not heavier, but rather lighter than common air; and though lime-water does not become turbid when it is exposed to this air, it is probably owing to the formation of a selenitic salt, as was the case with the simple burning of brimstone abovementioned. That something proceeding from the brimstone strongly affects the water which is confined in the same place with this brimstone, is manifest from the very strong smell that it has of the volatile spirit of vitriol. I conclude the diminution of air by this process is of the same kind with the diminution of it in the other cases, because when this mixture is put into air which has been previously diminished, either by the burning of candles, by respiration, or putrefaction, though it never fails to diminish it something more, it is, however, no farther than this process alone would have done it. If a fresh mixture be introduced into a quantity of air which had been reduced by a former mixture, it has little or no farther effect.

I observed, that when a mixture of this kind was taken out of a quantity of air in which a candle had before burned out, and in which it had stood for several days, it was quite cold and black, as it always becomes in a confined place; but it presently grew very hot, smocked copiously, and smelted very offensively; and when it was cold, it was brown, like the ruff of iron.

I once put a mixture of this kind to a quantity of inflammable air, made from iron, by which means it was diminished $\frac{1}{5}$ or $\frac{1}{10}$ in its bulk; but, as far as I could
I could judge, it was still as inflammable as ever. Another quantity of inflammable air was also reduced in the same proportion, by a mouse putrefying in it; but its inflammability was not seemingly lessened.

Air diminished by this mixture of iron filings and brimstone, is exceedingly noxious to animals, and I have not perceived that it grows any better by keeping in water. The smell of it is very pungent and offensive.

The quantity of this mixture which I made use of in the preceding experiments, was from two to four ounce measures; but I did not perceive, but that the diminution of the quantity of air (which was generally about twenty ounce measures) was as great with the smallest, as with the largest quantity. How small a quantity is necessary to diminish a given quantity of air to a maximum, I have made no experiments to ascertain.

As soon as this mixture of iron filings, with brimstone and water, begins to ferment, it also turns black, and begins to swell, and it continues to do so, till it occupies twice as much space as it did at first; and the force with which it expands is great; but how great it is I have not endeavoured to determine.

When this mixture is immersed in water, it generates no air, though it becomes black, and swells.
VI.
OF NITROUS AIR.

Ever since I first read Dr. Hales's most excellent Statical Essays, I was particularly struck with that experiment of his, of which an account is given, Vol. I. p. 224, and Vol. II. p. 280; in which common air, and air generated from the Walton pyrites, by spirit of nitre, made a turbid red mixture, and in which part of the common air was absorbed; but I never expected to have the satisfaction of seeing this remarkable appearance, supposing it to be peculiar to that particular mineral. Happening to mention this subject to the Hon. Mr. Cavendish, when I was in London, in the spring of the year 1772, he said that he did not imagine but that other kinds of pyrites might answer as well as that which Dr. Hales made use of, and that probably the red appearance of the mixture depended upon the spirit of nitre only. This encouraged me to attend to the subject; and having no pyrites, I began with the solution of the different metals in spirit of nitre, and catching the air which was generated in the solution, I presently found what I wanted, and a good deal more.

Beginning with the solution of brass, on the 4th of June 1772, I first found this remarkable species of air; one effect of which, though it was casually observed by Dr. Hales, he gave but little attention to; and which, as far as I know, has passed altogether unnoticed since his time, insomuch that no name has been given to it. I therefore found myself, contrary to...
to my first resolution, under an absolute necessity of giving a name to this kind of air myself. When I first began to speak and write of it to my friends, I happened to distinguish it by the name of nitrous air, because I had procured it by means of spirit of nitre only; and though I cannot say that I altogether like the term, because this air is not got from all the metals by the same spirit, neither myself nor any of my friends, to whom I have applied for the purpose, have been able to hit upon a better; so that I am obliged, after all, to content myself with it.

I have found that this kind of air is readily procured from iron, copper, brass, tin, silver, quicksilver, bismuth, and nickel, by the nitrous acid only, and from gold and the regulus of antimony by aqua regia. The circumstances attending the solution of each of these metals are various, but hardly worth mentioning, in treating of the properties of the air which they yield, which, from what metal soever it is extracted, has, as far as I have been able to observe, the very same properties.

One of the most conspicuous properties of this kind of air is the great diminution of any quantity of common air with which it is mixed, attended with a turbid red, or deep orange colour, and a considerable heat. The smell of it, also, is very strong, and remarkable, but very much resembling that of smoking spirit of nitre.

The diminution of a mixture of this and common air is not an equal diminution of both the kinds, which is all that Dr. Hales could observe, but of the common air chiefly, though not wholly. For if one measure of nitrous air be put to two measures of common
common air, in a few minutes (by which time the
effervescence will be over, and the mixture will have
recovered its transparency) there will want about one
ninth of the original two measures. I hardly know
any experiment that is more adapted to amaze and
surprise than this is, which exhibits a quantity of
air, which, as it were, devours a quantity of another
kind of air half as large as itself, and yet is so far from
gaining any addition to its bulk, that it is diminished
by it. If, after this full saturation of common air with
nitrous air, more nitrous air be put to it, it makes an
addition equal to its own bulk, without producing
the least redness, or any other visible effect.

That this diminution is chiefly in the quantity of
common air, is evident from this observation, that if
the smallest quantity of common air be put to any
larger quantity of nitrous air, though the two toge-
ther will not occupy so much space as they did sepa-

tately, yet the quantity will be still larger than that
of the nitrous air only. One ounce measure of com-
mon air being put to near twenty ounce measures of
nitrous air, made an addition to it of about half an
ounce measure. This, however, being a much greater
proportion than the diminution of common air, in the
former experiment, seems to prove that part of the
diminution in the former case is in the nitrous air.

Besides, it will presently appear, that nitrous air is
subject to a most remarkable diminution; and as
common air, in a variety of other cases, suffers a di-
mination from one fifth to one fourth, I conclude,
that in this case also it does not exceed that propor-
tion, and therefore that the remainder of the dimi-
nution respects the nitrous air.
In order to judge whether the water contributed to the diminution of this mixture of nitrous and common air, I made the whole process several times in quicksilver, using one third of nitrous, and two thirds of common air, as before. In this case the redness continued a very long time, and the diminution was not so great as when the mixtures had been made in water, there remaining one seventh more than the original quantity of common air. This mixture stood all night upon the quicksilver; and the next morning I observed that it was no farther diminished upon the admission of water to it, nor by pouring it several times through the water, and letting it stand in water two days. Another mixture, which stood about six hours on the quicksilver, was diminished a little more upon the admission of water, but was never less than the original quantity of common air. In another case, however, in which the mixture stood but a very short time in quicksilver, the farther diminution, which took place upon the admission of water, was much more considerable; so that the diminution, upon the whole, was very nearly as great as if the process had been entirely in water. It is evident from these experiments, that the diminution is in part owing to the absorption by the water; but that when the mixture is kept a long time, in a situation in which there is no water to absorb any part of it, it acquires a constitution, by which it is afterwards incapable of being absorbed by water.

In order to determine whether the fixed part of common air was deposited in the diminution of it by
by nitrous air, I inclosed a vessel full of lime water in the jar in which the process was made, but it occasioned no precipitation of the lime; and when the vessel was taken out, after it had been in that situation a whole day, the lime was easily precipitated by breathing into it as usual.

It is exceedingly remarkable that this effervescence and diminution, occasioned by the mixture of nitrous air, is peculiar to common air, or air fit for respiration; and, as far as I can judge, from a great number of observations, is at least very nearly, if not exactly, in proportion to its fitness for this purpose; so that by this means the goodness of air may be distinguished much more accurately than it can be done by putting mice, or any other animals, to breathe in it. This was a most agreeable discovery to me, as I hope it may be an useful one to the public; especially as, from this time, I had no occasion for so large a stock of mice as I had been used to keep for the purpose of these experiments, using them only in those which required to be very decisive; and in these cases I have seldom failed to know beforehand in what manner they would be affected.

It is also remarkable that, on whatever account air is unfit for respiration, this same test is equally applicable. Thus there is not the least effervescence between nitrous and fixed air, or inflammable air, or any species of diminished air. Also the degree of diminution being from nothing at all to more than one third of the whole of any quantity of air, we are by this means in possession of a prodigiously large scale, by which we may distinguish very
very small degrees of difference in the goodness of air. I have not attended much to this circumstance, having used this test chiefly for greater differences; but, if I did not deceive myself, I have perceived a real difference in the air of my study, after a few persons have been with me in it, and the air on the outside of the house. Also a phial of air having been sent me, from the neighbourhood of York, it appeared not to be so good as the air near Leeds; that is, it was not diminished so much by an equal mixture of nitrous air, every other circumstance being as nearly the same as I could contrive. It may perhaps be possible, but I have not yet attempted it, to distinguish some of the different winds, or the air of different times of the year, by this test.

By means of this test I was able to determine what I was before in doubt about, viz., the kind as well as the degree of injury done to air by candles burning in it. I could not tell with certainty by means of mice, whether it was at all injured with respect to respiration; and yet if nitrous air may be depended upon for furnishing an accurate test, it must be rather more than one third worse than common air, and have been diminished by the same general cause of the other diminutions of air. For when, after many trials, I put one measure of thoroughly putrid and highly noxious air, into the same vessel with two measures of good wholesome air, and into another vessel an equal quantity, viz., three measures of air in which a candle had burned out; and then put equal quantities of nitrous air to each of them, the former was diminished rather more than the latter. It agrees with
with this observation, that burned air is farther diminished both by putrefaction, and a mixture of iron filings and brimstone; and I therefore, take it for granted, by every other cause of the diminution of air. It is probable, therefore, that burned air is air so far loaded with phlogiston, as to be able to extinguish a candle, which it may do long before it is fully saturated.

Inflammable air with a mixture of nitrous air burns with a green flame. This makes a very pleasing experiment when it is properly conducted. As, for some time, I chiefly made use of copper for the generation of nitrous air, I first ascribed this circumstance to that property of this metal, by which it burns with a green flame; but I was presently satisfied that it must arise from the spirit of nitre, for the effect is the very same from whichever of the metals the nitrous air is extracted, all of which I tried for this purpose, even silver and gold. A mixture of oil of vitriol and spirit of nitre in equal proportions dissolved iron, and the produce was nitrous air; but a less degree of spirit of nitre in the mixture produced air that was inflammable, and which burned with a green flame. It also tinged common air a little red, and diminished it, though not much.

The diminution of common air by a mixture of nitrous air, is not so extraordinary as the diminution which nitrous air itself is subject to from a mixture of iron filings and brimstone, made into a paste with water. This mixture, as I have already observed, diminishes common air between one fifth and one fourth, but has no such effect upon any
any kind of air that has been diminished, and rendered noxious by any other process; but when it is put to a quantity of nitrous air, it diminishes it so much, that no more than one fourth of the original quantity will be left. The effect of this process is generally perceived in five or six hours, about which time the visible effervescence of the mixture begins; and in a very short time it advances so rapidly, that in about an hour almost the whole effect will have taken place. If it be suffered to stand a day or two longer, the air will still be diminished farther, but only a very little farther, in proportion to the first diminution. The glass jar, in which the air and this mixture have been confined, has generally been so much heated in this process, that I have not been able to touch it.

Nitrous air thus diminished has not the peculiar smell of nitrous air, but smells just like common air in which the same mixture has stood; and it is not capable of being diminished any farther, by a fresh mixture of iron and brimstone.

Common air saturated with nitrous air is also no farther diminished by this mixture of iron filings and brimstone, though the mixture ferments with great heat, and swells very much in it.

Plants die very soon, both in nitrous air, and also in common air saturated with nitrous air, but especially in the former.

Neither nitrous air, nor common air saturated with nitrous air, differs in specific gravity from common air, or, at least, so little, that I could...
not be sure of it, sometimes about three pints of it seeming to be about half a grain heavier, and at other times as much lighter than common air.

Having, among other kinds of air, exposed a quantity of nitrous air, to water out of which the air had been well boiled, in the experiment to which I have more than once referred, as having been the occasion of several new and important observations, I found that $\frac{1}{6}$ of the whole was absorbed. Perceiving, to my great surprize, that so very great a proportion of this kind of air was miscible with water, I immediately began to agitate a considerable quantity of it, in a jar standing in a trough of the same kind of water; and with about four times as much agitation as fixed air requires, it was so far absorbed by the water, that only about one fifth remained. This remainder extinguished flame, and was noxious to animals. Afterwards I diminished a pretty large quantity of it to one eighth of its original bulk, and the remainder still retained much of its peculiar smell, and diminished common air a little. A mouse also died in it, but not so suddenly as it would have done in pure nitrous air. In this operation the peculiar smell of nitrous air is very manifest, the water being first impregnated with the air, and then transmitting it to the common atmosphere.

This experiment gave me the hint of impregnating water with nitrous air, in the manner in which I had before done it with fixed air; and I presently found that distilled water would imbibe about one tenth of its bulk of this kind of air, and that
that it acquired a remarkably acid and astringent taste from it. The smell of water thus impregnated is at first peculiarly pungent. I did not choose to swallow any of it, though, for any thing that I know, it may be perfectly innocent, and perhaps, in some cases, salutary.

This kind of air is retained very obstinately by water. In an exhausted receiver a quantity of water thus saturated emitted a whitish fume, such as sometimes issues from bubbles of this air when it is first generated, and also some air bubbles; but though it was suffered to stand a long time in this situation, it still retained its peculiar taste; but when it had stood all night pretty near the fire, the water was become quite vapid, and had deposited a filmy kind of matter, of which I had often collected a considerable quantity from the trough in which jars containing this air had stood. This I suppose to be a precipitate of the metal by the solution of which the nitrous air was generated. I have not given so much attention to it as to know, with certainty, in what circumstances this deposit is made, any more than I do the matter deposited from inflammable air abovementioned; for I cannot get it, at least in any considerable quantity, when I please; whereas I have often found abundance of it, when I did not expect it at all.

The nitrous air with which I made the first impregnation of water was extracted from copper; but when I made the impregnation with air from quicksilver, the water had the very same taste, though the matter deposited from it seemed to be of a dif-
ferent kind; for it was whitish, whereas the other had a yellowish tinge. Except the first quantity of this impregnated water, I could never deprive any more that I made of its peculiar taste. I have even let some of it stand more than a week, in phials with their mouths open, and sometimes very near the fire, without producing any alteration in it.

Whether any of the spirit of nitre be properly contained in the nitrous air, and be mixed with the water in this operation, I have not yet endeavoured to determine. This, however, may probably be the case, as the spirit of nitre is in a considerable degree volatile.

It will perhaps be thought, that the most useful, if not the most remarkable, of all the properties of this extraordinary kind of air, is its power of preserving animal substances from putrefaction, and of restoring those that are already putrid, which it possesses in a far greater degree than fixed air. My first observation of this was altogether casual. Having found nitrous air to suffer so great a diminution as I have already mentioned by a mixture of iron filings and brimstone, I was willing to try whether it would be equally diminished by other causes of the diminution of common air, especially by putrefaction; and for this purpose I put a dead mouse into a quantity of it, and placed it near the fire, where the tendency to putrefaction was very great. In this case there was a considerable diminution, viz. from $5\frac{1}{2}$ to $3\frac{1}{2}$; but not so great as I had expected, the antiseptic power of the nitrous air having checked the
the tendency to putrefaction; for when, after a week, I took the mouse out, I perceived, to my very great surprize, that it had no offensive smell.

Upon this I took two other mice, one of them just killed, and the other soft and putrid, and put them both into the same jar of nitrous air, standing in the usual temperature of the weather, in the months of July and August of 1772; and after 25 days, having observed that there was little or no change in the quantity of the air, I took the mice out; and, examining them, found them both perfectly sweet, even when cut through in all places. That which had been put into the air when just dead was quite firm; and the flesh of the other, which had been putrid and soft, was still soft; but perfectly sweet.

In order to compare the antiseptic power of this kind of air with that of fixed air, I examined a mouse which I had inclosed in a phial full of fixed air, as pure as I could make it, and which I had corked very close; but upon opening this phial in water, about a month after, I perceived that a large quantity of putrid effluvium had been generated; for it rushed with violence out of the phial; and the smell that came from it, the moment the cork was taken out, was insufferably offensive. Indeed Dr. Macbride says, that he could only restore very thin pieces of putrid flesh by means of fixed air. Perhaps the antiseptic power of these kinds of air may be in proportion to their acidity. If a little pains were taken with this subject, this remarkable antiseptic power of nitrous air might possibly be applied to various uses, perhaps to the preservation
preservation of the more delicate birds, fishes, fruits, &c. mixing it in different proportions with common or fixed air. Of this property of nitrous air anatomists may perhaps avail themselves, as animal substances may by this means be preserved in their natural soft state; but how long it will answer for this purpose, experience only can shew.

I calcined lead and tin in the manner hereafter described in a quantity of nitrous air, but with very little sensible effect; which rather surprized me; as, from the result of the experiment with iron filings and brimstone, I had expected a very great diminution of the nitrous air by this process, the mixture of iron filings and brimstone, and the calcination of metals, having the same effect upon common air, both of them diminishing it in nearly the same proportion.

Nitrous air is procured from all the proper metals by spirit of nitre, except lead, and from all the semi-metals that I have tried, except zinc. For this purpose I have used bismuth and nickel, with spirit of nitre only, and regulus of antimony and platina, with aqua regia.

I got little or no air from lead by spirit of nitre, and have not yet made any experiments to ascertain the nature of this solution. With zinc I have taken a little pains.

Four penny weights and seventeen grains of zinc dissolved in spirit of nitre, to which as much water was added, yielded about twelve ounce measures of air, which had, in some degree, the properties of nitrous air, making a flight effervescence with common air, and diminishing it about as much as nitrous
trous air, which had been itself diminished one half by washing in water. The smell of them both was also the same; so that I concluded it to be the same thing, that part of the nitrous air which is imbibed by water being retained in this solution.

In order to discover whether this was the case, I made the solution boil in a sand heat. Some air came from it in this state, which seemed to be the same thing, as nitrous air diminished about one sixth, or one eighth, by washing in water. When the fluid part was evaporated, there remained a brown fixed substance, which was observed by Mr. Hellot, who describes it, Ac. Par. 1735, M. p. 35. A part of this I threw into a small red hot crucible; and covering it immediately with a receiver, standing in water, I observed that very dense red fumes rose from it, and filled the receiver. This redness continued about as long as that which is occasioned by a mixture of nitrous and common air; the air was also considerably diminished within the receiver. This substance, therefore, must certainly have contained within it the very same thing, or principle, on which the peculiar properties of nitrous air depend. It is remarkable, however, that though the air within the receiver was diminished about one fifth by this process, it was itself as much affected with a mixture of nitrous air, as common air is, and a candle burnt in it very well. This may perhaps be attributed to some effect of the spirit of nitre, in the composition of that brown substance.

Nitrous air, I find, will be considerably diminished in its bulk by standing a long time in water,
ter, about as much as inflammable air is diminished in the same circumstances. For this purpose I kept for some months a quart bottle full of each of these kinds of air; but as different quantities of inflammable air vary very much in this respect, it is not improbable but that nitrous air may vary also.

From one trial that I made, I conclude that nitrous air may be kept in a bladder much better than most other kinds of air. The air to which I refer was kept about a fortnight in a bladder, through which the peculiar smell of the nitrous air was very sensible for several days. In a day or two the bladder became red, and was much contracted in its dimensions. The air within it had lost very little of its peculiar property of diminishing common air.

I did not endeavour to ascertain the exact quantity of nitrous air produced from given quantities of all the metals which yield it; but the few observations which I did make for this purpose I shall recite in this place:

dwt. gr.
6 0 of silver yielded 17½ ounce measures
5 19 of quicksilver 4½
1 2½ of copper 14½
2 0 of brass 21
0 20 of iron 16
1 5 of bismuth 6
0 12 of nickel 4

VII. Of
VII.

Of Air infected with the fumes of burning charcoal.

Air infected with the fumes of burning charcoal is well known to be noxious; and the Honourable Mr. Cavendish favoured me with an account of some experiments of his, in which a quantity of common air was reduced from 180 to 162 ounce measures, by passing through a red-hot iron tube filled with the dust of charcoal. This diminution he ascribed to such a destruction of common air as Dr. Hales imagined to be the consequence of burning. Mr. Cavendish also observed, that there had been a generation of fixed air in this process, but that it was absorbed by soap leys. This experiment I also repeated, with a small variation of circumstances, and with nearly the same result.

Afterwards, I endeavoured to ascertain, by what appears to me to be an easier and a more certain method, in what manner air is affected with the fumes of charcoal, viz. by suspending bits of charcoal within glass vessels, filled to a certain height with water, and standing inverted in another vessel of water, while I threw the focus of a burning mirror, or lens, upon them. In this manner I diminished a given quantity of air one fifth, which is nearly in the same proportion with other diminutions of air.

Some fixed air seems to be contained in charcoal, and to be set loose from it by this process; for if I made use of lime-water, it never failed to become turbid,
terbid, presently after the heat was applied. This was the case with whatever degree of heat the charcoal had been made. If, however, the charcoal had not been made with a very considerable degree of heat, there never failed to be a permanent addition of inflammable air produced; which agrees with what I observed before, that, in converting dry wood into charcoal, the greatest part is changed into inflammable air. I have sometimes found, that charcoal which was made with the most intense heat of a smith’s fire, which vitrified part of a common crucible in which the charcoal was confined, and which had been continued above half an hour, did not diminish the air in which the focus of a burning mirror was thrown upon it; a quantity of inflammable air equal to the diminution of the common air being generated in the process; whereas, at other times, I have not perceived that there was any generation of inflammable air, but a perfect diminution of common air, when the charcoal had been made with a much less degree of heat. This subject deserves to be farther investigated.

To make the preceding experiment with still more accuracy, I repeated it in quicksilver; when I perceived that there was a small increase of the quantity of air, from a generation either of fixed or inflammable air, but I suppose of the former. Thus it stood without any alteration a whole night, and part of the following day; when lime-water, being admitted to it, it presently became turbid, and, after some time, the whole quantity of air, which was about four ounce measures, was diminished one fifth, as before. In this case, I carefully weighed the piece of charcoal, which was exactly two grains, and could not find that
that it was sensibly diminished in weight by the operation.

Air thus diminished by the fumes of burning charcoal not only extinguishes flame, but is in the highest degree noxious to animals; it makes no effervescence with nitrous air, and is incapable of being diminished any farther by the fumes of more charcoal, by a mixture of iron filings and brimstone, or by any other cause of the diminution of air that I am acquainted with.

This observation, which respects all other kinds of diminished air, proves that Dr. Hales was mistaken in his notion of the absorption of air in those circumstances in which he observed it. For he supposed that the remainder was, in all cases, of the same nature with that which had been absorbed, and that the operation of the same cause would not have failed to produce a farther diminution; whereas all my observations not only shew that air, which has once been fully diminished by any cause whatever, is not only incapable of any farther diminution, either from the same or from any other cause, but that it has likewise acquired new properties, most remarkably different from those which it had before, and that they are, in a great measure, the same in all the cases. These circumstances give reason to suspect, that the cause of diminution is, in reality, the same in all the cases. What this cause is, may, perhaps, appear in the next course of observations.
VIII.

Of the Effect of the Calcination of Metals, and of the Effluvia of Paint Made with White-Lead and Oil, on Air.

Having been led to suspect, from the experiments which I had made with charcoal, that the diminution of air in that case, and perhaps in other cases also, was, in some way or other, the consequence of its having more than its usual quantity of phlogiston, it occurred to me, that the calcination of metals, which are generally supposed to consist of nothing but a metallic earth united to phlogiston, would tend to ascertain the fact, and be a kind of experimentum crucis in the case. Accordingly, I suspended pieces of lead and tin in given quantities of air, in the same manner as I had before treated the charcoal; and throwing the focus of a burning mirror or lens upon them, in such a manner as to make them fume copiously, I presently perceived a diminution of the air. In the first trial that I made, I reduced four ounce measures of air to three, which is the greatest diminution of common air that I had ever observed before, and which I account for, by supposing that, in other cases, there was not only a cause of diminution, but causes of addition also, either of fixed or inflammable air, or some other permanently elastic matter, but that, the effect of the calcination of metals being simply the escape of phlogiston, the cause of diminution was alone and uncontrolled.
The air, which I had thus diminished by calcination of lead, I transferred into another clean phial, but found that the calcination of more lead in it had no farther effect upon it. This air also, like that which had been infected with the fumes of charcoal, was in the highest degree noxious, made no effervescence with nitrous air, was no farther diminished by the mixture of iron filings and brimstone, and was not only rendered innoxious, but also recovered, in a great measure, the other properties of common air, by washing in water.

It might be suspected that the noxious quality of the air in which lead was calcined, might be owing to some fumes peculiar to that metal; but I found no sensible difference between the properties of this air, and that in which tin was calcined.

The water over which metals are calcined acquires a yellowish tinge, and an exceedingly pungent smell and taste, pretty much, as near as I can recollect, for I did not compare them together, like that over which brimstone has been frequently burned. Also a thin and whitish pellicle covered both the surface of the water, and likewise the sides of the phial in which the calcination was made, insomuch that, without frequently agitating the water, it grew so opaque by this constantly accumulating incrustation, that the sun beams could not be transmitted through it in a quantity sufficient to produce the calcination.

I imagined, however, that, even when this air was transferred into a clean phial, the metals were not so easily melted or calcined as they were in fresh air; for the air being once fully saturated with phlogiston, may not so readily admit any more, though it be only...
to transmit it to the water. I also suspected that metals were not easily melted or calcined in inflammable, fixed, or nitrous, air, or any kind of diminished air. None of these kinds of air suffered any change by this operation; nor was there any precipitation of lime, when charcoal was heated in any of these kinds of air standing in lime-water.

Query. May not water impregnated with phlogiston from calcined metals, or by any other method, be of some use in medicine? The effect of this impregnation is exceedingly remarkable; but the principle with which it is impregnated is volatile, and entirely escapes in a day or two, if the surface of the water be exposed to the common atmosphere.

It should seem that phlogiston is retained more obstinately by charcoal than it is by lead or tin; for when any given quantity of air is fully saturated with phlogiston from charcoal, no heat that I have yet applied has been able to produce any more effect upon it; whereas, in the same circumstances, lead and tin may still be calcined. The air, indeed, can take no more; but the water receives it, and the sides of the phial also receive an addition of incrustation. This is a white powdery substance, and well deserves to be examined. I shall endeavour to do it at my leisure.

Lime-water never became turbid by the calcination of metals over it; but the colour, smell, and taste of the water was always changed, and the surface of it became covered with a yellow pellicle, as before.

When this process was made in quicksilver, the air was diminished only one fifth; and upon water being admitted
admitted to it, no more was absorbed; which is an effect similar to that of a mixture of nitrous and common air, which was mentioned before.

The preceding experiments on the calcination of metals suggested to me a method of explaining the cause of the mischief which is known to arise from fresh paint, made with white lead (which I suppose is an imperfect calx of lead) and oil. To verify my hypothesis, I first put a small pot full of this kind of paint, and afterwards (which answered much better, by exposing a greater surface of the paint) I daubed several pieces of paper with it, and put them under a receiver, and observed, that in about twenty-four hours, the air was diminished between one fifth and one fourth, for I did not measure it very exactly. This air also was, as I expected to find it, in the highest degree, noxious; it did not effervescce with nitrous air, it was no farther diminished by a mixture of iron filings and brimstone, and was made wholesome by agitation in water deprived of all air.

I think it appears pretty evident, from the preceding experiments on the calcination of metals, that air is some way or other diminished in consequence of being highly charged with phlogiston, and that agitation in water restores it, by imbibing a great part of the phlogistic matter. That water has a considerable affinity with phlogiston, is evident from the strong impregnation which it receives from it. May not plants also restore air diminished by putrefaction, by absorbing part of the phlogiston with which it is loaded? The greater part of a dry plant, as well as of a dry animal substance, consists of inflammable air, or something that is capable of being converted into.
into inflammable air; and it seems to be as probable that this phlogistic matter may have been imbibed by the roots and leaves of plants, and afterwards incorporated into their substance, as that it is altogether produced by the power of vegetation. May not this phlogistic matter be even the most essential part of the food and support of both vegetable and animal bodies?

In the experiments with metals, the diminution of air seems to be the consequence of nothing but a saturation with phlogiston; and in all the other cases of the diminution of air, I do not see but that it may be effected by the same means. When a vegetable or animal substance is dissolved by putrefaction, the escape of the phlogistic matter (which, together with all its other constituent parts, is then let loose from it) may be the circumstance that produces the diminution of the air in which it putrefies. It is highly improbable that what remains after an animal body has been thoroughly dissolved by putrefaction, should yield so great a quantity of inflammable air, as the dried animal substance would have done. Of this I have not made an actual trial, though I have often thought of doing it, and still intend to do it; but I think there can be no doubt of the result. Again, the iron, by its fermentation with brimstone and water, is evidently reduced to a calx, so that phlogiston must have escaped from it. Phlogiston also must evidently be set loose by the ignition of charcoal, and is not improbably the matter which flies off from paint, composed of white lead and oil. Lastly, since spirit of nitre is known to have a very remarkable affinity with phlogiston, it is far from being
being improbable that nitrous air may also produce
the same effect by the same means.

To this hypothesis it may be objected, that, if
diminished air be air saturated with phlogiston, it
ought to be inflammable; but this by no means
follows, since its inflammability may depend upon
some particular mode of combination, or degree of
affinity, with which we are not acquainted. Besides,
inflammable air seems to consist of some other prin-
ciple, or to have some other constituent part, besides
phlogiston and common air, as is probable from that
remarkable deposit, which, as I have observed, is
made by inflammable air, both from iron and zinc.

It is not improbable, however, but that a greater
degree of heat may inflame that air which ex-
tinguishes a common candle, if it could be conveni-
ently applied. Air that is inflammable, I observe,
extinguishes red hot wood; and indeed inflammable
substances can only be those which, in a certain de-
gree of heat, have a less affinity with the phlogiston
they contain, than the air, or some other contiguous
substance, has with it; so that the phlogiston only
quits one substance, with which it was before com-
bined, and enters another, with which it may be
combined in a very different manner. This substance,
however, whether it be air or any thing else, being
now fully saturated with phlogiston, and not being
able to take any more, in the same circumstances,
must necessarily extinguish fire, and put a stop to
the ignition of all other bodies, that is, to the farther
escape of phlogiston from them.

That plants restore noxious air, by imbibing the
phlogiston with which it is loaded, is very agreeable to
Vol. LXXII.
the conjectures of Dr. Franklin, made many years ago, and expressed in the following extract from the last edition of his Letters, p. 346.

"I have been inclined to think that the fluid fire, as well as the fluid air, is attracted by plants in their growth, and becomes consolidated with the other materials of which they are formed, and makes a great part of their substance; that, when they come to be digested, and to suffer in the vessels a kind of fermentation, part of the fire, as well as part of the air, recovers its fluid active state again, and diffuses itself in the body, digesting and separating it; that the fire so reproduced, by digestion and separation, continually leaving the body, its place is supplied by fresh quantities, arising from the continual separation; that whatever quickens the motion of the fluids in an animal quickens the separation, and re-produces more of the fire, as exercise; that all the fire emitted by wood, and other combustibles, when burning, existed in them before, in a solid state, being only discovered when separating; that some fossils, as sulphur, sea-coal, &c. contain a great deal of solid fire; and that, in short, what escapes and is dissipated in the burning of bodies, besides water and earth, is generally the air, and fire, that before made parts of the solid."

IX.

OF AIR PROCURED BY MEANS OF SPIRIT OF SALT.

Being very much struck with the result of an experiment of the Hon. Mr. Cavendish, related Phil. Tranf.
by which, though, he says, he was not able to get any inflammable air from copper, by means of spirit of salt, he got a much more remarkable kind of air, \textit{viz.} one that lost its elasticity by coming into contact with water, I was exceedingly desirous of making myself acquainted with it. On this account, I began with making the experiment in quicksilver, which I never failed to do in any case in which I suspected that air might either be absorbed by water, or be in any other manner affected by it; and by this means I presently got a much more distinct idea of the nature and effects of this curious solution.

Having put some copper filings into a small phial, with a quantity of spirit of salt; and making the air, which was generated in great plenty, on the application of heat, ascend into a tall glass vessel full of quicksilver, and standing in quicksilver, the whole produce continued a considerable time without any change of dimensions. I then introduced a small quantity of water to it, when about three fourths of it (the whole being about four ounce measures) presently, but gradually, disappeared, the quicksilver rising in the vessel. I then introduced a considerable quantity of water; but there was no farther diminution of the air, and the remainder I found to be inflammable.

Having frequently continued this process a long time after the admission of the water, I was much amused with observing the large bubbles of the newly generated air, which came through the quicksilver, the sudden diminution of them when they came to the water, and the very small bubbles which went through...
through the water. They made, however, a continual, though slow, increase of inflammable air.

Fixed air, being admitted to the whole produce of this air from copper, had no sensible effect upon it. Upon the admission of water, a great part of the mixture, which, no doubt, was the most subtle kind of air from the copper, presently disappeared; another part, which I suppose to have been the fixed air, was absorbed slowly; and in this particular case the very small permanent residuum did not take fire; but it is very possible that it might have done so, if the quantity had been greater.

Lime-water being admitted to the whole produce of air from copper became white; but this I suspect to have arisen from some other circumstance than the precipitation of the lime which it contained.

The solution of lead in the marine acid is attended with the very same phenomena as the solution of copper in the same acid; about three fourths of the generated air disappearing on the contact of water, and the remainder being inflammable.

The solutions of iron, tin, and zinc, in the marine acid, were all attended with the same phenomena as the solutions of copper and lead, but in a less degree; for in iron one eighth, in tin one sixth, and in zinc one tenth of the generated air disappeared on the contact with water. The remainder of the air from iron, in this case, burned with a green, or very light blue flame.

I had always thought it something extraordinary that a species of air should lose its elasticity by the mere contact of any thing, and from the first suspected that it must have been imbibed by the water that
that was admitted to it; but so very great a quantity of this air disappeared upon the admission of a very small quantity of water, that I could not help concluding that appearances favoured the former hypothesis. I found, however, that when I admitted a much smaller quantity of water, confined in a narrow glass tube, a part only of the air disappeared, and that very slowly, and that more of it vanished upon the admission of more water. This observation put it beyond a doubt, that this air was properly imbibed by the water, which, being once fully saturated with it, was not capable of receiving any more. The water thus impregnated tasted very acid, even when it was much diluted with other water, through which the tube containing it was drawn. It even dissolved iron very fast, and generated inflammable air. This last observation, together with another which immediately follows, led me to the discovery of the true nature of this remarkable kind of air, as it had hitherto been called.

Happening, at one time, to use a good deal of copper and a small quantity of spirit of salt, in the generation of this kind of air, I was surprized to find that air was produced long after, I could not but think that the acid must have been saturated with the metal; and I also found that the proportion of inflammable air to that which was absorbed by the water continually diminished, till, instead of being one fourth of the whole as I had first observed, it was not so much as one twentieth. Upon this, I concluded that this subtle air did not arise from the copper, but from the spirit of salt; and presently making the experiment with the acid only, without any copper,
per, or metal of any kind, this air was immediately produced in as great plenty as before; so that this remarkable kind of air is, in fact, nothing more than the vapour, or fumes of spirit of salt, which appear to be of such a nature, that they are not liable to be condensed by cold, like the vapour of water, and other fluids. This vapour, however, seems to lose its elasticity, in some measure, gradually, unless it should be thought to be affected by the quicksilver, with which it is in contact; for it was always diminished, more or less, by standing.

This elastic acid vapour extinguishes flame, and is much heavier than common air; but how much heavier, will not be easy to ascertain. A cylindrical glass vessel, about three fourths of an inch in diameter, and four inches deep, being filled with it, and turned upside down, a lighted candle may be let down into it more than twenty times before it will burn at the bottom. It is pleasing to observe the colour of the flame in this experiment; for both before the candle goes out, and also when it is first lighted again, it burns with a beautifully green, or rather light blue flame, such as is seen when common salt is thrown into the fire.

When this elastic vapour is all expelled from any quantity of spirit of salt, which is easily perceived by the vapour being condensed by cold, the remainder is a very weak acid, barely capable of dissolving iron.

Being now in the possession of a new subject of experiments, viz. an elastic acid vapour, in the form of a permanent air, easily procured, and effectually confined by glass and quicksilver, with which
which it did not seem to have any affinity; I immediately began to introduce a variety of substances to it, in order to ascertain its peculiar properties and affinities, and also the properties of those other bodies with respect to it.

Beginning with water, which, from preceding observations, I knew would imbibe it, and become impregnated with it; I found that 2½ grains of rain water absorbed three ounce measures of this vapour, after which it was increased one third in its bulk, and weighed twice as much as before; so that this concentrated vapour seems to be twice as heavy as rain water. Water impregnated with it makes the strongest spirit of salt that I have seen, dissolving iron with the most rapidity. Consequently, two thirds of the best spirit of salt is nothing more than mere phlegm or water.

Iron filings, being admitted to this vapour, were dissolved by it pretty fast; half of the vapour disappearing, and the other half becoming inflammable air, not absorbed by water. Putting chalk to it, fixed air was produced.

I had not introduced many substances to this vapour, before I discovered that it had an affinity with phlogiston, so that it would deprive other substances of it, and form with it such an union as constitutes inflammable air; which seems to shew, that inflammable air universally consists of the union of some acid vapour with phlogiston.

Inflammable air was produced, when to this vapour I put spirit of wine, oil of olives, oil of turpentine, charcoal, phosphorus, bees-wax, and even sulphur. This last observation, I own, surprized;
prized me; for, the marine acid being reckoned the
weakest of the three mineral acids, I did not think
that it had been capable of dislodging the oil of
vitriol from this substance; but I found that it had
the very same effect both upon alum and nitre; the
vitriolic acid in the former case, and the nitrous in
the latter, giving place to the stronger vapour of
spirit of salt.

The rust of iron, and the precipitate of nitrous air
made from copper, also imbibed this vapour very
fast, and the little that remained of it was inflam-
nable air; which proves, that these calces con-
tain phlogiston. It seems also to be pretty evi-
dent, from this experiment, that the precipitate
above-mentioned is a real calx of the metal, by the
solution of which the nitrous air is generated.

As some remarkable circumstances attend the ab-
sorption of this vapour of spirit of salt, by the sub-
stances above-mentioned, I shall briefly mention
them.

Spirit of wine absorbs this vapour as readily as
water itself, and is increased in bulk by that means.
Also, when it is saturated, it dissolves iron with as
much rapidity, and still continues inflammable.

Oil of olives absorbs this vapour very slowly, and,
at the same time, it turns almost black, and becomes
glutinous. It is also less miscible with water, and
aquires a very disagreeable smell. By continuing
upon the surface of the water, it became white, and
its offensive smell went off in a few days.

Oil of turpentine absorbed this vapour very fast,
turning brown, and almost black. No inflammable
air was formed, till I raised more of the vapour than
the oil was able to absorb, and let it stand a considerable time; and still the air was but weakly inflammable. The same was the case with the oil of olives, in the last mentioned experiment, and it seems to be probable, that, the longer this acid vapour had continued in contact with the oil, the more phlogiston it would have extracted from it. It is not improbable, but that, in the intermediate state, before it becomes inflammable air, it may be nearly of the nature of common air.

Bees-wax absorbed this vapour very slowly. About the bigness of a hazel-nut of the wax being put to three ounce measures of the vapour, the vapour was diminished one half in two days, and, upon the admission of water, half of the remainder also disappeared. This air was strongly inflammable.

Charcoal absorbed this vapour very fast. About one fourth of it was rendered immiscible in water, and was but weakly inflammable.

A small bit of phosphorus, perhaps about half a grain, smoked, and gave light in the vapour of spirit of salt, just as it would have done in common air confined. It was not sensibly wasted after continuing about twelve hours in that state, and the bulk of the vapour was very little diminished. Water being admitted to it absorbed it as before, except about one fifth of the whole, which was but weakly inflammable.

Putting several pieces of sulphur to this vapour, it was absorbed but slowly. In about twenty-four hours about one fifth of the quantity had disappeared; and water being admitted to the remainder, very little
more was absorbed. The remainder was inflammable, and burned with a blue flame.

Nowithstanding the affinity which this vapour of spirit of salt appears to have with phlogiston, it is not capable of depriving all bodies of it. I found that dry wood, crusts of bread, and raw flesh, very readily imbibed this acid vapour, but did not part with any of their phlogiston to it. All these substances turned very brown, after they had been some time exposed to this vapour, and tasted very strongly of the acid when they were taken out; but the flesh, when washed in water, became very white, and the fibres easily separated from one another, even more than they would have done if it had been boiled or roasted.

When I put a piece of saltpetre to this vapour, it was presently surrounded with a white fume, which soon filled the whole vessel, exactly like the fume which bursts from the bubbles of nitrous air, when it is generated by a vigorous fermentation, and such as is seen when nitrous air is mixed with this vapour of spirit of salt. In about a minute, the whole quantity of vapour was absorbed, except a very small quantity, which might be the common air that had lodged upon the surface of the spirit of salt within the phial.

A piece of alum exposed to this vapour turned yellow, absorbed it as salt as the saltpetre had done, and was reduced by it to the form of a powder. The surface both of the nitre and alum was, I doubt not, changed into common salt, by this process. Common salt, as might be expected, had no effect whatever on this vapour.
[243]

From considering the affinity which this vapour has with phlogiston, I was induced to try the effect of a mixture of it with nitrous air. Accordingly, to two parts of this vapour, I put one part of nitrous air; and, in about twenty-four hours, the whole was diminished to something less than the original quantity of the vapour, and was no farther diminished by the admission of water. Holding the flame of a candle over this air, the lower part of it burned green, but there was no sensible explosion. At different times I collected 2½ ounce measures of this mixture of air; but, upon agitating it in rain-water, it was presently diminished to 1½ ounce measures. In this state it effervesced with nitrous air, and was considerably diminished by it, but not so much as common air. Some allowance, no doubt, must be made for the small quantities of common air, which lodged on the top of my phials, when I raised the fume from the spirit of salt; but, from the precautions that I made use of, I think that very little is to be allowed to this circumstance; and, upon the whole, I am of opinion, that this experiment is an approach to the generation of common air, or air fit for respiration.

I had also imagined, that if air diminished by the processes above-mentioned was affected in this manner, in consequence of its being saturated with phlogiston, a mixture of this vapour might imbibe that phlogiston, and render it wholesome again; but I put about one fourth of this vapour to a quantity of air in which metals had been calcined, without making any sensible alteration in it. I do not, however, infer from this, that air is not diminished by means of phlogiston, since the air, like some other substances, may
may hold the phlogiston too fast, to be deprived of it by this acid vapour.

I shall conclude my account of these experiments with observing, that the electric spark is visible in the vapour of spirit of salt, exactly as it is in common air; and though I kept making this spark a considerable time in a quantity of it, I did not perceive that any sensible alteration was made in it. A little inflammable air was produced, but not more than might have come from the two iron nails which I made use of in taking the sparks.

X.

Miscellaneous Observations.

Many of the preceding observations relating to the vinous and putrefactive fermentations, I had the curiosity to endeavour to ascertain in what manner the air would be affected by the acetous fermentation. For this purpose I inclosed a phial full of small beer in a jar standing in water, and observed that during the first two or three days there was an increase of the air in the jar, but from that time it gradually decreased, till at length there appeared to be a diminution of about $\frac{1}{10}$ of the whole quantity. During this time the whole surface of it was gradually covered with a scum, beautifully corrugated. After this there was an increase of the air till there was more than the original quantity; but this must have been fixed air, not incorporated with the rest of the mass; for, withdrawing the beer, which I found to be four, after it had stood 18 or 20 days under the jar, and...
passing the air several times through cold water, the original quantity was diminished about \(\frac{1}{9} \). In the remainder a candle would not burn, and a mouse would have died presently. The smell of this air was exceedingly pungent, but different from that of the putrid effluvium. A mouse lived perfectly well in this air, thus affected with the acetic fermentation; after it had stood several days mixed with four times the quantity of fixed air.

All the kinds of factitious air on which I have yet made the experiment are highly noxious to animals, except that which is extracted from salt-petre, or alum; but in this even a candle burned just as in common air. In one quantity which I got from salt-petre a candle not only burned, but the flame was increased, and something was heard like a hissing, similar to the decrepitation of nitre in an open fire. This experiment was made when the air was fresh made, and while it probably contained some particles of nitre, which would have been deposited afterwards. The air was extracted from these substances by putting them into a gun barrel, which was much corroded and soon spoiled by the experiment. What effect this circumstance may have had upon the air I have not considered.

November 6, 1772, I had the curiosity to examine the state of a quantity of this air, which had been extracted from salt-petre above a year, and which at first was perfectly wholesome; when, to my very great surprize, I found that it was become, in the highest degree, noxious. It made no effervescence with nitrous air, and a mouse died the moment it was put into it. I had not, however, washed it in rain water quite ten minutes (and
(and perhaps less time would have been sufficient) when I found, upon trial, that it was restored to its former perfectly wholesome state. It effervesced with nitrous air as much as the best common air ever does, and even a candle burned in it very well, which I had never before observed of any kind of noxious air meliorated by agitation in water. This series of facts, relating to air extracted from nitre, appear to me to be very extraordinary and important, and, in able hands, may lead to considerable discoveries.

There are many substances which impregnate the air in a very remarkable manner, but without making it noxious to animals. Among other things I tried volatile alkaline salts, and camphire, the latter of which I melted with a burning glass, in air inclosed in a phial. The mouse which was put into this air sneezed and coughed very much, especially after it was taken out; but it presently recovered, and did not appear to have been sensibly injured.

Having made several experiments with a mixture of iron filings and brimstone, kneaded to a paste with water, I had the curiosity to try what would be the effect of substituting brass dust in the place of the iron filings. The result was, that when this mixture had stood about three weeks, in a given quantity of air, it had turned black, but was not increased in bulk. The air also was neither sensibly increased nor decreased, but the nature of it was changed, for it extinguished flame, it would have killed a mouse presently, and was not restored by fixed air, which had been mixed with it several days.

I have
I have frequently mentioned my having, at one time, exposed equal quantities of different kinds of air in jars standing in boiled water. The common air in this experiment was diminished four sevenths, and the remainder extinguished flame. This experiment demonstrates that water does not absorb air equally, but that it decomposes it, taking one part, and leaving the rest. To be quite sure of this fact, I agitated a quantity of common air in boiled water, and when I had reduced it from eleven ounce measures to seven, I found that it extinguished a candle, but a mouse lived in it very well. At another time a candle barely went out when the air was diminished one third, and at other times I have found this effect take place at other very different degrees of diminution. This difference I attribute to the differences in the state of the water with respect to the air contained in it; for sometimes it had stood longer than at other times before I made use of it. I also used distilled water, rain water, and water out of which the air had been pumped, promiscuously with rain water. I even doubt not but that, in a certain state of the water, there might be no sensible difference in the bulk of the agitated air, and yet at the end of the processes it would extinguish a candle, air being supplied from the water in the place of that part of the common air which had been absorbed.

It is certainly a little extraordinary that the very same process should so far mend putrid air, as to reduce it to the standard of air in which candles have burned out; and yet that it should so far injure common and wholesome air, as to reduce it to about the
the same standard; but so the fact certainly is. If air extinguish flame in consequence of its being previously saturated with phlogiston, it must, in this case, have been transferred from the water to the air.

To a quantity of common air, thus diminished by agitation in water, till it extinguished a candle, I put a plant, but it did not so far restore it as that a candle would burn in it again; which to me appeared not a little extraordinary, as it did not seem to be in a worse state than air in which candles had burned out, and which had never failed to be restored by the same means. I had no better success with a quantity of permanent air; which I had collected from my pump water. Indeed these experiments were begun before I was acquainted with that property of nitrous air, which makes it so accurate a measure of the goodness of other kinds of air; and it might perhaps be rather too late in the year when I made the experiments. Having neglected these two jars of air, the plants died and putrefied in both of them; and then I found the air in them both to be highly noxious, and to make no effervescence with nitrous air.

I found that a pint of my pump water contains about one fourth of an ounce measure of air, one half of which was afterwards absorbed by standing in-fresh pump water. A candle would not burn in the air, but a mouse lived in it very well. Upon the whole, it seemed to be in about the same state as air in which a candle had burned out.
I once imagined that, by mere stagnation, air might become unfit for respiration, or at least for the burning of candles; but if this be the case, and the change be produced gradually, it must require a long time for the purpose. For on the 22d of September 1772, I examined a quantity of common air, which had been kept in a phial, without agitation, from May 1771, and found it to be in no respect worse than fresh air, even by the test of the nitrous air.

The crystallization of nitre makes no sensible alteration in the air in which the process is made. For this purpose I dissolved as much nitre as a quantity of hot water would contain, and let it cool under a receiver, standing in water.

November 6, 1772, a quantity of inflammable air, which, by long keeping, had come to extinguish flame, I observed to smell very much like common air in which a mixture of iron filings and brimstone had flood. It was not, however, quite so strong, but it was equally noxious.

Bismuth and nickel are dissolved in the marine acid with the application of a considerable degree of heat; but little or no air is got from either of them; but, what I thought a little remarkable, both of them smelled very much like Harrowgate water. This smell I have met with several times in the course of my experiments, and in processes very different from one another.

As I generally made use of mice in the experiments which relate to respiration, and some persons may chuse to repeat them after me, and pursue them farther than I have done; it may be

Vol. LXXII. K k
of use to them to be informed, that I kept them without any difficulty in glass receivers, open at the top and bottom, and having a quantity of paper, or tow, in the inside, which should be changed every three or four days; when it will be most convenient also to change the vessel, and wash it. But they must be kept in a pretty exact temperature, for either much heat or much cold kills them presently. The place in which I have generally kept them is a shelf over the kitchen fire place, where, as it is usual in Yorkshire, the fire never goes out; so that the heat varies very little; and I find it to be at a medium about 70 degrees of Fahrenheit's thermometer. When they had been made to pass through the water, as they necessarily must be, in order to a change of air, they require, and will bear a very considerable degree of heat, to warm and dry them.

I found, to my great surprize, in the course of these experiments, that mice will live entirely without water; for though I have kept some of them for three or four months, and have offered them water several times, they would never taste it; and yet they continued in perfect health and vigour. Two or three of them will live very peaceably together in the same vessel; though I had one instance of one mouse tearing another almost in pieces, though there was plenty of provisions for both of them.

The apparatus with which the principal of the preceding experiments were made is exceedingly simple, and cheap. The drawing annexed (Tab. IX.) exhibits a view of every thing that is most important in it.
A is an oblong trough, about eight inches deep, kept nearly full of water, and B, B are jars standing in it, about ten inches long, and two and a half wide; such as I have generally used for electrical batteries.

C, C are flat stones, sunk about an inch, or half an inch, under the water, on which vessels of any kind may be conveniently placed, during a course of experiments.

D, D are pots nearly full of water, in which jars or phials, containing any kind of air, to which plants or any other substances may be exposed, and having their mouths immersed in water; so that the air in the inside can have no communication with the external air.

E is a small glass vessel, of a convenient size for putting a mouse into it, in order to try the whole phenomena of any kind of air that it may contain.

F is a cylindrical glass vessel, five inches in length, and one in diameter, very proper for trying whether any kind of air will admit a candle to burn in it. For this purpose a bit of wax candle, G, may be fastened to the end of a wire, H, and turned up in such a manner as to be let down into the vessel with the flame upwards. The vessel should be kept carefully covered till the moment that the candle is admitted to it. In this manner I have frequently extinguished a candle above twenty times in one of these vessels full of air, though it is impossible to dip the candle into it, without giving the external air an opportunity of mixing with it, more or less.

K k 2

I is
C is a funnel of glass or tin, which is necessary for transferring air into vessels which have narrow mouths.

K is a glass syphon, which is very useful for drawing air out of a vessel which has its mouth immersed in water, and thereby raising the water to whatever height may be most convenient. I do not think it by any means safe to depend upon a valve at the top of a vessel, which Dr. Hales very often made use of; for, since my first disappointments, I have never thought the communication between the external and internal air sufficiently cut off, unless glass, or a body of water, or, in some cases, quicksilver, have intervened between them.

L is a piece of a gun barrel, closed at one end, having the stem of a tobacco-pipe luted to the other. To the end of this pipe I sometimes fastened a flaccid bladder, in order to receive the air discharged from the substance contained in the barrel; but, when the air was generated slowly, I commonly contrived to put this end of the pipe under a vessel full of water, and standing with its mouth inverted in another vessel of water, that the new air might have a more perfect separation from the external air than a bladder could make.

M is a small phial containing some mixture that will generate air. This air passes through a bent glass tube inserted into the cork at one end, and going under the edge of the jar N at the other; the jar being placed with part of its mouth projecting beyond the flat stones CC for that purpose.
On the Ceiling of a CHOLTRY at
VERDAPETTAH in the MADURAH COUNTRY
taken the 8th of July 1704.

a. Symbol of the Universal Deity.
b. Two hecks of Iron to suspend a kind of throne on which the
Deity or Deity often sat, when exhibited to the adorers.
On the Ceiling of a Choultah
Verdapetah in the Madurah Co

taken the 8th of July 1761.

a. Symbol of the Universal

b. The hooks of Iron to suspend a kind of Deity or Sun my often sat, when exhibited
AN APPENDIX,

Containing an account of some experiments made by Mr. Hey, which prove that there is no oil of vitriol in water impregnated with fixed air extracted from chalk by oil of vitriol; and also a letter from Mr. Hey, to Dr. Priestley, concerning the effects of fixed air applied by way of clyster.

EXPERIMENTS TO PROVE THAT THERE IS NO OIL OF VITRIOL IN WATER IMPREGNATED WITH FIXED AIR.

It having been suggested, that air arising from a fermenting mixture of chalk and oil of vitriol might carry up with it a small portion of the vitriolic acid, rendered volatile by the act of fermentation; I made the following experiments, in order to discover whether the acidulous taste, which water impregnated with such air affords, was owing to the presence of any acid, or only to the fixed air it had absorbed.

EXPERIMENT I.

I mixed a tea-spoonful of syrup of violets with an ounce of distilled water, saturated with fixed air procured from chalk by means of the vitriolic acid; but neither upon the first mixture, nor after standing...
Standing 24 hours, was the colour of the syrup at all changed, except by its simple dilution.

Experiment II.

A portion of the same distilled water, unimpregnated with fixed air, was mixed with the syrup in the same proportion: not the least difference in colour could be perceived betwixt this and the above-mentioned mixture.

Experiment III.

One drop of oil of vitriol being mixed with a pint of the same distilled water, an ounce of this water was mixed with a tea-spoonful of the syrup. This mixture was very distinguishable in colour from the two former, having a purplish cast, which the others wanted.

Experiment IV.

The distilled water impregnated with so small a quantity of vitriolic acid having a more agreeable taste than when alone, and yet manifesting the presence of an acid by means of the syrup of violets; I subjected it to some other tests of acidity. It formed curds when agitated with soap, lathered with difficulty, and very imperfectly; but not the least ebullition could be discovered upon dropping in spirit of sal ammoniac, or solution of salt of tartar, though I had taken care to render the latter free from causticity by impregnating it with fixed air.
Experiment V.

The distilled water saturated with fixed air neither effervesced, nor shewed any clouds, when mixed with the fixed or volatile alkali.

Experiment VI.

No curd was formed by pouring this water upon an equal quantity of milk, and boiling them together.

Experiment VII.

When agitated with soap, this water produced curds, and lathered with some difficulty; but not so much as the distilled water mixed with vitriolic acid in the very small proportion above-mentioned. The same distilled water without any impregnation of fixed air lathered with soap without the least previous curdling. River water, and a pleafant pump water not remarkably hard, were compared with these. The former produced curds before it lathered, but not quite in so great a quantity as the distilled water impregnated with fixed air: the latter caused a stronger curd than any of the others above-mentioned.

Experiment VIII.

Apprehending that the fixed air in the distilled water occasioned the coagulation, or separation of the oily part of the soap, only by destroying the causticity of the lixivium, and thereby rendering the union
union less perfect betwixt that and the tallow, and not by the presence of any acid; I impregnated a fresh parcel of the same distilled water with fixed air, which had passed through half a yard of a wide barometer tube filled with salt of tartar; but this water caused the same curdling with soap as the former had done, and appeared in every respect to be exactly the same.

Experiment IX.

Distilled water saturated with fixed air formed a white cloud and precipitation, upon being mixed with a solution of *Jacetarum saturni*. I found likewise, that fixed air, after passing through the tube filled with alkaline salt, upon being let into a phial containing a solution of the metallic salt in distilled water, caused a perfect separation of the lead, in form of a white powder; for the water, after this precipitation, shewed no cloudiness upon a fresh mixture of the substances which had before rendered it opaque.
A Letter from Mr. Hey to Dr. Priestley, concerning the Effects of fixed Air applied by way of Clyster.

Leeds, Feb. 15th, 1772.

Reverend Sir,

Having lately experienced the good effects of fixed air in a putrid fever, applied in a manner, I believe, not heretofore made use of, I thought it proper to inform you of the agreeable event, as the method of applying this powerful corrector of putrefaction took its rise principally from your observations and experiments on factitious air; and now, at your request, I send the particulars of the case I mentioned to you, as far as concerns the administration of this remedy.

January 8, 1772, Mr. Lightbourne, a young gentleman who lives with me, was feized with a fever, which, after continuing about ten days, began to be attended with those symptoms that indicate a putrescent state of the fluids.

18th, His tongue was black in the morning when I first visited him, but the blackness went off in the day-time upon drinking: He had begun to doze much the preceding day, and now he took little notice of those that were about him: His belly was loose, and had been so for some days: his pulse beat 110 strokes in a minute, and was rather low: he was ordered to take twenty five grains of Peruvian bark with five of tormentill root in powder every four hours, and to use red wine and water cold as his common drink.
19th, I was called to visit him early in the morning, on account of a bleeding at the nose which had come on: he lost about eight ounces of blood, which was of a loose texture: the haemorrhage was suppressed, though not without some difficulty, by means of tents made of soft lint, dipped in cold water strongly impregnated with tincture of iron, which were introduced within the nostrils quite through to their posterior apertures; a method which has never yet failed me in like cases. His tongue was now covered with a thick black pellicle, which was not diminished by drinking: his teeth were furred with the same kind of sordid matter, and even the roof of his mouth and fauces were not free from it: his looseness and stupor continued, and he was almost incessantly muttering to himself: he took this day a scruple of the Peruvian bark with ten grains of tormentilla every two or three hours: a starch clyster containing a drachm of the compound powder of bole, without opium, was given morning and evening: a window was set open in his room, though it was a severe frost, and the floor was frequently sprinkled with vinegar.

20th, He continued nearly in the same state: when roused from his dozing, he generally gave a sensible answer to the questions asked him; but he immediately relapsed, and repeated his muttering. His skin was dry, and harsh, but without petechiae. He sometimes voided his urine and faces into the bed, but generally had sense enough to ask for the bed-pan: as he now nauseated the bark in substance, it was exchanged for Huxham’s tincture,
tincture, of which he took a table-spoonful every two hours in a cup full of cold water: he drank sometimes a little of the tincture of roses, but his common liquors were red wine and water, or rice water and brandy acidulated with elixir of vitriol: before drinking, he was commonly requested to rinse his mouth with water to which a little honey and vinegar had been added. His looseness rather increased, and the stools were watery, black, and foetid: it was judged necessary to moderate this discharge, which seemed to sink him, by mixing a drachm of the theriaca Andromachi with each clyster.

21st. The same putrid symptoms remained, and a subsultus tendinum came on: his stools were more foetid; and so hot, that the nurse assured me she could not apply her hand to the bed-pan, immediately after they were discharged, without feeling pain on this account: The medicine and clysters were repeated.

Reflecting upon the disagreeable necessity we seemed to lie under of confining this putrid matter in the intestines, left the evacuation should destroy the vis vitae before there was time to correct its bad quality, and overcome its bad effects, by the means we were using; I considered, that, if this putrid ferment could be more immediately corrected, a stop would probably be put to the flux, which seemed to arise from, or at least to be increased by it; and the fomes of the disease would likewise be in a great measure removed. I thought nothing was so likely to effect this, as the introduction of fixed air into the alimentary canal, which,
which, from the experiments of Dr. Macbride, and those you have made since his publication, appears to be the most powerful corrector of putrefaction hitherto known. I recollected what you had recommended to me as deserving to be tried in putrid diseases, I mean, the injection of this kind of air by way of clyster, and judged that in the present case such a method was clearly indicated.

The next morning I mentioned my reflections to Dr. Hird and Dr. Crowther, who kindly attended this young gentleman at my request, and proposed the following method of treatment, which, with their approbation, was immediately entered upon. We first gave him five grains of ipecacoanha, to evacuate in the most easy manner part of the putrid colluvies: he was then allowed to drink freely of brisk orange-wine, which contained a good deal of fixed air, yet had not lost its sweetness: the tincture of bark was continued as before; and the water, which he drank along with it, was impregnated with fixed air from the atmosphere of a large vat of fermenting wort, in the manner I had learned from you: instead of the astringent, air alone was injected, collected from a fermenting mixture of chalk and oil of vitriol: he drank a bottle of orange-wine in the course of this day, but refused any other liquor except water and his medicine: two bladders full of air were thrown up in the afternoon.

23d. His stools were less frequent; their heat likewise and peculiar fetor were considerably diminished: his muttering was much abated, and the subfultus tendinum had left him. Finding that part of the air was rejected when given with a bladder in the
the usual way, I contrived a method of injecting it which was not so liable to this inconvenience. I took the flexible tube of that instrument which is used for throwing up the fume of tobacco, and tied a small bladder to the end of it that is connected with the box made for receiving the tobacco, which I had previously taken off from the tube: I then put some bits of chalk into a six ounce phial until it was half filled; upon these I poured such a quantity of oil of vitriol as I thought capable of saturating the chalk, and immediately tied the bladder, which I had fixed to the tube, round the neck of the phial: the clyster pipe, which was fastened to the other end of the tube, was introduced into the anus before the oil of vitriol was poured upon the chalk. By this method the air passed gradually into the intestines as it was generated; the rejection of it was in a great measure prevented; and the inconvenience of keeping the patient uncovered during the operation was avoided.

24th, He was so much better, that there seemed to be no necessity for repeating the clysters: the other means were continued. The window of his room was now kept shut.

25th, All the symptoms of putrescency had left him; his tongue and teeth were clean; there remained no unnatural blackness or faeces in his stools, which had now regained their proper consistence; his dozing and muttering were gone off; and the disagreeable odour of his breath and perspiration was no longer perceived. He took nourishment to-day, with pleasure; and, in the afternoon, sat up an hour in his chair.

His
His fever, however, did not immediately leave him; but this we attributed to his having caught cold from being incautiously uncovered, when the window was open, and the weather extremely severe; for a cough, which had troubled him in some degree from the beginning, increased, and he became likewise very hoarse for several days, his pulse, at the same time, growing quicker: but these complaints also went off, and he recovered, without any return of the bad symptoms above-mentioned.

I am, Reverend Sir,

Your obliged humble servant,

Wm Hey.

P. S.

October 29, 1772.

Fever of the putrid kind have been so rare in this town, and in its neighbourhood, since the commencement of the present year, that I have not had an opportunity of trying again the effects of fixed air, given by way of clyster, in any case exactly similar to Mr. Lightbowne's. I have twice given water saturated with fixed air in a fever of the putrefacient kind, and it agreed very well with the patients. To one of them the aërial clysters were administered, on account of a looseness, which attended the fever, though the stools were not black, nor remarkably hot or fætid.

These
These clysters did not remove the looseness, though there was often a greater interval than usual betwixt the evacuations, after the injection of them. The patient never complained of any uneasy distention of the belly from the air thrown up, which, indeed, is not to be wondered at, considering how readily this kind of air is absorbed by aqueous and other fluids, for which sufficient time was given, by the gradual manner of injecting it. Both those patients recovered, though the use of fixed air did not produce a crisis before the period on which such fevers usually terminate. They had neither of them the opportunity of drinking such wine as Mr. Lightbowne took after the use of fixed air was entered upon; and this, probably, was some disadvantage to them.

I find the methods of procuring fixed air, and impregnating water with it, which you have published, are preferable to those I made use of in Mr. Lightbowne's case.

The flexible tube used for conveying the fume of tobacco into the intestines, I find to be a very convenient instrument in this case, by the method before-mentioned (only adding water to the chalk, before the oil of vitriol is instilled, as you direct): the injection of air may be continued at pleasure, without any other inconvenience to the patient, than what may arise from his continuing in one position during the operation, which scarcely deserves to be mentioned, or from the continuance of the clyster-pipe within the anus, which is but trivial, if it be not shaken much, or pushed against the rectum.

When I said in my letter, that fixed air appeared to be the greatest corrector of putrefaction hitherto known,
known, your philosophical researches had not then made you acquainted with that most remarkably antiseptic property of nitrous air. Since you favoured me with a view of some astonishing proofs of this, I have conceived hopes, that this kind of air may likewise be applied medicinally to great advantage.

W. H.

A CORRECTION.

Upon re-examining Dr. Hales's account of his experiments to measure the diminution of air by respiration (Statical Essays, Vol. I. p. 238, 4th edition), I find an error of the press, of \(\frac{3}{5} \) for \(\frac{1}{5} \); so that the diminution of air by respiration, though very various, is, I believe, always considerably less than by putrefaction, or several other causes of diminution. But though I have mentioned this diminution as equal to several others, nothing material depends upon it; the quality of the air thus diminished being, in all respects, the same, notwithstanding the cause of increase (which, as I have observed, in this and other cases, co-operates with the cause of diminution) be greater than I had supposed.

I did not endeavour to measure the quantity of the diminution of air by respiration, as I did that by other causes; because I imagined that it had been done sufficiently by others, and especially by Dr. Hales.
Received November 29, 1771.

XX. An Essay on the periodical Appearing and Disappearing of certain Birds, at different Times of the Year. In a Letter from the Honourable Daines Barrington, Vice-Pres. R. S. to William Watson, M. D. F. R. S.

Dear Sir,

As I know, from some conversation we have had on this head, that you consider the migration of birds as a very interesting point in natural history, I send you the following reflections on this subject as they have occurred to me upon looking into most of the ornithologists who have written on this question.

It will be first necessary in the present, as in all other disputes, to define the terms on which the controversy arises. I therefore premise that I mean by the word Migration, a periodical passage by a whole species of birds across a considerable extent of sea.

I do not mean therefore to deny that a bird, or birds, may possibly fly now and then from Dover to Calais.
Calais, from Gibraltar to Tangier, or any other such narrow strait, as the opposite coasts are clearly within the bird's ken, and the passage is no more adventurous than across a large fresh water lake.

I as little mean to deny that there may be a periodical flitting of certain birds from one part of a continent to another: the Royston Crow, and Rock Ouzel, furnish instances of such a regular migration.

What I mean chiefly to contend therefore is, that it seems to be highly improbable, birds should, at certain seasons, traverse large tracts of sea, or rather ocean, without leaving any of the same species behind, but the sick or wounded.

As this litigated point can only receive a satisfactory decision from very accurate observations, all preceding naturalists, from Aristotle to Ray, have spoken with much doubt concerning it.

Soon after the appearance of Monf. Adanson's voyage to Senegal, however, Mr. Collinson first, in the Philosophical Transactions *, and after him the most eminent ornithologists of Europe, seem to have considered this traveller's having caught four European Swallows on the 6th of October, not far from the African coast, as a decisive proof, that the common swallows, when they disappear in Europe, make for Africa during the winter, and return again to us in the spring.

It is therefore highly incumbent upon me, who profess that I am by no means satisfied with the account, given by Monf. Adanson of these European

swallows, to enter into a very minute discussion of what may, or may not, be inferred from his observation according to his own narrative.

I shall first however consider the general arguments, from which it is supposed that birds of passage periodically traverse oceans, which indeed may be almost reduced to this single one, viz. we see certain birds in particular seasons, and afterwards we see them not; from which data it is at once inferred, that the cause of their disappearance is, that they have crossed large tracts of sea.

The obvious answer to this is, that no well-attested instances can be produced of such a migration, as I shall endeavour to shew hereafter; but besides this convincing negative proof, there are not others wanting.

Those who send birds periodically across the sea, being pressed with the very obvious answer I have before suggested, have recourse to two suppositions, by which they would account for their not being observed by seamen during their passage.

The first is, that they rise so high in the air that they become invisible; but unfortunately the rising to this extraordinary height, or the falling from it, is equally destitute of any ocular proof, as the birds being seen during their passage.

I have indeed conversed with some people, who conceive they have lost sight of birds by their perpendicular flight; I must own, however, that I have

* It is well known that some ornithologists have even supposed that they leave our atmosphere for that of the Moon. See Harl. Misc. Vol. II. p. 561.
always supposed them to be short-sighted, as I never
lost the sight of a bird myself, but from its horizontal
distance, and I doubt much whether any bird was
ever seen to rise to a greater height than perhaps
twice that of St. Paul's cross.*

There seems to be but one method indeed, by
which the height of a bird in the air may be esti-
mated; which is, by comparing its apparent size with
its known one, when very near us; and it need not
be said that method of calculating must depend
entirely upon the sight of the observer, who, if he
happens not to see objects well at a distance, will very
soon suppose the bird to be lost in the clouds.

There is also another objection to the hypothesis
of birds passing seas at such an extraordinary height,
raising from the known rarefaction of the air, which
may possibly be inconvenient for respiration, as well
as flight; and if this was not really the case, one
should suppose that birds would frequently rise to
such uncommon elevations, when they had no oc-
casion to traverse oceans.

* Wild geese fly at the greatest height of any bird I ever
happened to attend to; and from comparing them with rooks,
which I have frequently looked at, when perched on the cross of
St. Paul's, I cannot think that a wild-geese was ever diminished,
to my sight at least, more than he would be at twice the height
of St. Paul's, or perhaps 300 yards. Mr. Hunter, F. R. S. in-
forms me, that the bird which hath appeared to him as the highest
flier, is a small eagle on the confines of Spain and Portugal,
which frequents high rocks. Mr. Hunter hath first seen this
species of eagle from the bottom of a mountain, and followed it
to the top, when the bird hath risen so high as to appear less
than he did from the bottom. Mr. Hunter however adds, that
he could still hear the cry, and distinguish the bird.

The
The Scotch Ptarmigan frequents the highest ground of any British bird, and he takes but very short flights.

But it is also urged by some, that the reason why seamen do not regularly see the migration of birds, is because they choose the night, and not the day, for the passage.*

Now though it may be allowed, that possibly birds may cross from the coast of Holland to the Eastern coast of England (for example) during a long night, yet it must be dark nearly as long as it is within the Arctic circle to afford time for a bird to pass from the Line to many parts of Europe, which Mons. de Buffon calculates, may be done in about eight or nine days †.

If the passage happened in half the nights of the year, which have the benefit of moonlight, the birds would be discovered by the sailors almost as well as in the day time; to which I must add that several supposed birds of passage (the Fieldfare in particular) always call when on their flight, so that the seamen must be deaf as well as blind, if such flocks of birds escape their notice.

Other objections however remain to this hypothesis of a passage during the night.

* Mr. Catesby supposes that they may thus pass in the night time, to avoid birds of prey. Phil. Trans. Abr. Vol. II. p. 887. But are not owls then stirring?

On the other hand, if they migrate in the day time, kites, hawks, and other birds of prey, must be very bad sportsmen not to attend (like Arabs) these large and periodical caravans.

† In the preface to the first volume of his lately published Ornithology, p. 32.
Most birds not only sleep during the night, but are as much incapacitated from distinguishing objects well as we are, in the absence of the sun: it is therefore inconceivable that they should choose owl-light for such a distant journey.

Besides this, the Eastern coast of England, to which birds of passage must necessarily first come from the continent, hath many light-houses upon it; they would therefore, in a dark night, immediately make for such an object, and destroy themselves by flying with violence against it, as is well known to every bat-fowler.

Having endeavoured to answer these two suppositions, by which it is contended that birds of passage may escape observation in their flight; I shall now consider all the instances I have been able to meet with of any birds being actually seen whilst they were crossing any extent of sea, though I might give a very short refutation to them, by inferring, that if this was ever experienced, it must happen as constantly in a sea, which is much navigated, as the return of the seafors.

I cannot do better than to follow these according to chronological order.

The first in point of time is that which is cited by Willoughby *, from Bellon, whose words are thus translated, "When we failed from Rhodes to Alexandria, many quails flying from the North towards the South, were taken in our ship, whence I am persuaded that they shift places; for formerly, when I failed out of the Isle of Zant to Morea, or Negropont, in the spring, I had ob-

*B. II. c. 11. § 8.
"served quails flying the contrary way to N. and S.
that they might abide there all summer, at which
time also a great many were taken in the ship."

Let us now consider what is to be inferred from
this citation.

In the first place, Bellon does not particularize the
longitude and latitude of that part of the Mediterra-
nean, which he was then crossing; and in his course
from Rhodes to Alexandria, both the islands of
Scarpanto and Crete could be at no great distance:
these quails therefore were probably flitting from one
island of the Mediterranean* to another.

The same observation may be made with regard to
the quails which he saw between Zant and Negro-
pont, as the whole passage is crowded with islands,
they therefore might be passing from island to island,
or headland to headland, which might very proba-
bly ly Eas and West, so as to occasion the birds
flying in a different direction, from which they passed
the ship before.

I have therefore no objection to this proof of migra-
ton, if it is only insisted upon to shew that a quail
shifts its station at certain seasons of the year; but
cannot admit that it is fair from hence to argue that
these birds periodically cross large tracts of sea.

Bellon himself states, that when the birds settled
upon the ship, they were taken by the first person
who chose to catch them, and therefore they must
have been unequal to the short flight which they
were attempting.

* One of the Mediterranean islands is supposed to have ob-
tained its ancient name of Ortygia from the numbers of quails.
It is very true that quails have been often pitched upon as instances of birds that migrate across seas, because they are scarcely ever seen in winter: it is well known, however, to every sportsman, that this bird never flies 300 yards at a time, and the tail being so short, it is highly improbable they should be equal to a passage of any length.

We find therefore, that quails, which are commonly supposed to leave our island in the winter, in reality retire to the sea coasts, and pick up their food amongst the sea weeds.*

I have happened lately to see a specimen of a particular species of quail, which is described by Dr. Shaw†, and is distinguished from the other kinds by wanting the hind-claw.

Dr. Shaw also states that it is a bird of passage. Now if quails really migrate from the coast of Barbary to Italy, as is commonly supposed, whence can it have arisen that this remarkable species hath escaped the notice of Aldrovandus, Olina, and the other Italian ornithologists?

When I had just finished what I have here said with regard to the migration of quails, I have had an opportunity of seeing the second volume of Monf. de Buffon’s ornithology‡; where, under this article, he contends that this bird leaves Europe in the winter.

It is incumbent upon me, therefore, either to own I am convinced by what this most ingenious and able naturalist hath urged, or to give my reasons why I

† Phyf. Obs. on the kingdom of Algiers, ch. 2.
‡ See p. 459, & seq.
still continue to differ from the opinion he maintains.

Though M. de Buffon hath discussed this point very much at large, yet I find only the following facts or arguments to be new.

He first cites the Memoirs of the Academy of Sciences *, for an account given by M. Godeheu of quails coming to the island of Malta in the month of May, and leaving it in September.

The first answer to this observation is, that the island of Malta is not only near to the coast of Africa, but to several of the Mediterranean islands; it therefore amounts to no more than the flitting I have before taken notice of †.

Monf. de Buffon supposes that a quail only quits one latitude for another, in order to meet with a perpetual crop on the ground.

Now can it be supposed that there is that difference between the harvest on the coast of Africa, and that of the small quantity of grain which grows on the rocky island of Malta, that it becomes inconvenient to the bird to stay in Africa as soon as May sets in; and necessary, on the other hand, to continue in Malta from May till September.

Monf. de Buffon then supposes that quails make their passage in the night, as well as conceives them to be of a remarkably warm temperature ‡, and says

* Tom. III. p. 91 and 92.
† Both Monfs. de Godeheu and M. de Buffon seem to conceive that the quail should fly in the same direction as the wind blows; but birds on the wing from point to point, which are at a considerable distance, fly against the wind, as their plumage is otherwise ruffled.
‡ As this is given for a reason why the African quails migrate Northward: Q. what is to become of the Icelandie quails during the summer?

Vol. LXII. N n that
that "chaud comme une caille," is in every one's mouth *.

Now in the first place their migration during the night, is contrary to Belon's account, which M. de Buffon so much relies upon, who expressly says, that the birds were caught in the day time †.

In the next place, I apprehend that "chaud comme une caille," alludes to the very remarkable falaciousness of this bird, and not to the constant heat of its body.

Monf. de Buffon then observes, that if quails are kept in a cage, they are remarkably impatient of confinement in the autumn and spring, whence he infers that they then want to migrate ‡; he also adds, in the same period, that this uneasiness begins an hour before the sun rises, and that it continues all the night.

This great naturalist does not state this observation as having been made by himself, and it seems upon the face of it to be a very extraordinary one.

* All birds indeed are warmer by four degrees than other animals. See some ingenious thermometrical experiments by Mr. Martin of Aberdeen, Edinb. 1771, 12mo.

† Upon looking a second time into Belon, he does not indeed state whether it was in the day or the night; but if it had happened in the latter, this traveller and ornithologist could not well have omitted such a circumstance. Besides this, he mentions in what direction the quails were flying, which he could not have discerned in the night.

‡ It may also arise from this bird's being of so quarrelsome a disposition, and consequently most likely to fight with its fellow prisoners when they are all in greatest vigour after moulting, and on the return of the spring.

M. de Buffon allows that they will fight for a grain of millet, and adds, "car parmi les animaux il faut un sujet reel pour so battre." M. de Buffon hath never been in a cockpit.
No one (at least with us) ever keeps quails in a cage except the poulterers, who always sell them as fat as they are fat, and consequently can give no account of what happens to them during so long an imprisonment as this observation necessarily implies.

No such remarkable uneasiness hath ever been attended to in any other supposed bird of passage during its confinement; but, allowing the fact to be as M. de Buffon states, he himself supplies us with the real cause of this impatience.

He asserts, that quails constantly moult twice* a year, viz. at the close both of summer and winter; whence it follows, that the bird, in autumn and the spring, must be in full vigour upon its recovery from this periodical illness: it can therefore as little brook confinement, as the physician’s patient upon the return of health after illness.

Thus much I have thought it necessary to say, in answer to M. de Buffon, who “dum errat, docet,” who scarcely ever argues ill but when he is misinformed as to facts, and who often, from strength of understanding, disbelieves such intelligence as might impose upon a naturalist of less acuteness and penetration.

* I have often heard that certain birds moult twice a year, some of which I have kept myself without their changing their feathers more than once.

I should suppose that this notion arises from some birds not moultling regularly in the autumn every year; and when the change takes place in the following spring, they very commonly die: I can scarcely think that many of them are equal to two illnesses of so long a continuance, which are constantly to return within twelvemonths.

I should therefore rather account for the extraordinary briskness of a quail in autumn and the spring, from its recovery after moultling in the former, and from the known effects of the spring as to most animals in the latter.
The next instance of a bird being caught at any distance from land, is in Sir Hans Sloane's voyage to Jamaica, who says, that a lark was taken in the ship 40 leagues from the shore: this therefore was certainly an unfortunate bird, forced out to sea by a strong wind in flying from headland to headland, as no one supposes the skylark to be a bird of passage.

The same answer may be given to a yellow-hammer's settling upon Hasselquift's ship in the entrance of the Mediterranean, with this difference, that either the European or African coast must have been much nearer than 40 leagues*.

The next fact to be considered is what is mentioned in a letter of Mr. Peter Collinson's, printed in the Philosophical Transactions †.

He there says, "That Sir Charles Wager had frequently informed him, that in one of his voyages home in the spring as he came into soundings in our channel, that a great flock of swallows almost covered his rigging, that they were nearly spent and famished, and were only feathers and bones; but being recruited by a night's rest, they took their flight in the morning."

The first answer to this is, that if these were birds which had crossed large tracts of sea in their periodical migrations, the same accident must happen eternally, both in the spring and autumn, which is not however pretended by any one.

In the next place, the swallows are stated to be spent both by famine and fatigue; and how were they to procure any flies or other sustenance on the rigging

* See Hasselquift's Travels, in pr. 1760, Part II, p. 461.
† 1760, Part II, p. 461.
rigging of the admiral’s ship, though they might indeed rest themselves?

Sir Charles, however, expressly informs us, that he was in the channel, and within soundings: these birds, therefore (like Bellon’s quails) were only passing probably from headland to headland; and being forced out by a strong wind, were obliged to settle upon the first ship they saw, or otherwise must have dropped into the sea, which I make no doubt happens to many unfortunate birds under the same circumstances.

As the birds which thus settled upon Sir Charles Wager’s rigging were swallows, it very naturally brings me now to consider the celebrated observation of Monf. Adanson, under all its circumstances, as it hath been so much relied upon, and by naturalists of so great eminence.

Monf. Adanson is a very ingenious writer, and the publick is much indebted to him for many of the remarks which he made whilst he resided in Senegal.

I may, however, I think, presume to say, that he had not before his voyage made ornithology his particular study; proofs of which are not wanting in other parts of his work, which do not relate to swallows.

For example, he supposes, that the Canary birds which are bred in Europe are white, and that they become so by our climate’s being more cold than that of Africa.

"J’ai remarqué que le serin qui devient tout blanc en France, est à Teneriffe d’un gris presque aussi foncé que celui de la linotte; ce changement de couleur provient vraisemblablement de la froideur de notre climat."

* Voyage au Senegal, p. 13. *
Mr. Adanson in this passage seems to have deduced two false inferences from having seen a few white Canary birds in France, which he afterwards compares with those of Teneriff, and supposes the change of colour to arise merely from alteration of climate: it is known, however, almost to every one, that there is an infinite variety in the plumage of the European Canary birds, which, as in poultry, arises from their being pampered with so much food, as well as confinement.*

Monf. Adanson, in another part of his voyage †, describes a Roller, which he supposes to migrate sometimes to the Southern parts of Europe.

This circumstance shews that he could not have looked much into books of natural history, because the principal synonym of this bird is *garrulus Argenteratensis* ‡; and Linnaeus informs us that it is found even in Sweden.§

* In the same passage, he compares the colour of the African Canary bird to that of the European linnet, and says it is *d'un gris presque aussi foncé*, whereas the European linnet is well known to be brown, and not grey. The linnet affords a very decisive proof that the change of plumage does not arise from the difference of climate, but the two causes I have assigned. The cock bird, whilst at liberty, hath a red breast: yet if it is either bred up in a cage from the nest, or is caught with its red plumage, and afterwards moulted in the house, it never recovers the red feathers.

That most able naturalist, Monf. de Buffon, from having seen some cock linnets which had thus moulted off, or perhaps some hen linnets (which have not a red breast) considers them as a distinct species, and compares their breeding together in an aviary, to that of the Canary bird and goldfinch. *Ornith.* p. xxii.

† P. 16. ‡ Or of Strafburg.
§ Faun. Suec. 94.
The strong characteristic mark of this bird, is the outermost feathers of the tail, which able naturalists describe as three fourths of an inch longer than the rest*. Mons. Adanson, however, compares their length, not with the other feathers of the tail, but with the length of the bird's body, which is by no means the natural or proper standard of comparison.

The reason of my taking notice of these more minute inaccuracies in Mons. Adanson's account of birds, arises from Mr. Collinson's relying upon his observations with regard to swallows being so absolutely decisive, because he is represented to be so able a naturalist.

I shall now state (very minutely) under what circumstances these swallows were caught, and what seems to be the true inference from his own account.

He informs us, that four swallows settled upon the ship, not 50 leagues from the coast of Senegal, on the 6th of October; that these birds were taken, and that he knew them to be the true swallow of Europe†, which he supposes were then returning to the coast of Africa.

I shall now endeavour to shew that these birds could not be European swallows; nor, if they were, could they have been on their return from Europe to Africa.

† I have before endeavoured to shew that Mons. Adanson does not always recollect with accuracy the plumage of the most common European birds, by what he says with regard to the linnet.
The word hirondelle, in French, is used as a general term for the four * species of these birds, as the term swallow is with us.

Now the four swallows thus caught and examined by Mons. Adanson were either all of the same species, or intermixed in some other proportion.

Would not then any naturalist in judging of a fact (as he himself supposes it to be) have particularized of what species of swallow these very interesting birds were?

Should not Mons. Adanson also have taken care to distinguish these supposed European swallows from two species of the same tribe, which bear a general resemblance to those of Europe, and are not only described, but engraved by Brisson, under the name of Hirondelle de Senegal & Hirondelle de rivage du Senegal *?

Though Mons. Adanson was above a year on this part of the African coast, paid so much attention to swallows, and was so immediately acquainted with the different species on the first inspection, yet he seems never to have discovered that there were such African swallows as are thus described and engraved by Brisson, though he must have seen them daily.

Mons. Adanson however concludes his account of the supposed European swallow, whilst it continues on the coast of Senegal, by a circumstance which

* Viz. the swallow *xal* ἠκποιν, the martin, the sand martin, and the swift: I omit the goatucker, because this bird, though properly classed as a species of swallow by ornithologists, is not so considered by others.

† See Brisson, Tom. II. pl. xiv.
seems to prove to demonstration of what species the
four swallows caught in the ship really were.

He says that they roost on the sand either by
themselves, or at most only in pairs, and that they
frequent the coast much more than the inland
parts *.

These swallows therefore, if they came from
Europe, must have immediately changed at once their
known habits: and is it not consequentially most clear
that they were of that species which Brissou describes
under the name of Hirondelle de rivage du Senegal?

But though it should be admitted, notwithstanding
what I have insisted upon, from Mons. Adanson's
own account, that these were really swallows of the
same kind with those of Europe; yet I must still
contend that they could not possibly have been on
their return from Europe to Africa, because the high
road for a bird from the most Western point of
Europe to Senegal, is along the N. West coast of
Africa, which projects greatly to the Westward of
any part of Europe.

What then could be the inducement to these four
swallows to fly 50 leagues to the Westward of the
cost of Senegal, so much out of the proper
direction?

It seems to me therefore, very clear, that these
swallows (whether of the European kind or not)
were flitting from the cape de Verde islands to the

* Voyage au Senegal, p. 67. I wish Mons. Adanson had
also informed us whether these swallows had the same notes with
those of Europe, which is a very material circumstance in the
natural history of birds, though little attended to by most ornith-
ologists.
coast of Africa, to which short flight, however, they were unequal, and were obliged from fatigue to fall into the sailors hands.

Monseigneur Adanson likewise mentions * that the ship's company caught a Roller on the 26th of April, which he supposes was on its passage to Europe, though he was then within sight of the coast of Senegal: this bird, however, must be admitted not to have had sufficient strength to reach the first stage of this round-about journey, and was therefore probably forced out to sea by a strong wind, in passing from head-land to head-land.

But I must not dismiss what hath been observed with regard to the swallows seen by Monseigneur at Senegal, without endeavouring also to answer what M. de Buffon hath not only inferred from it, but hath endeavoured to confirm by an actual experiment †.

M. de Buffon, from the many instances of swallows being found torpid even under water, very readily admits, that all the birds of this genus do not migrate, but only that species which was seen by Monseigneur Adanson in Africa, and which he generally refers to as the chimney swallow ‡; but from the outset, seems

* Voyage au Senegal, p. 15.
† See the two prefatory discourses to his sixteenth volume of natural history.
‡ So little do naturalists know of this very common bird, that I believe it hath never yet been observed by any writer, that the male swallow hath only the long slender feathers in the tail, which are considered as its most distinguishing marks. I venture to make this remark upon having seen the difference in two swallows which are in Mr. Tunstall's collection, F. R. S. as also in two others, which have lately been presented to the Museum.
to shew that he hath himself confounded this species with the martin.

"Prenons un seul oifseau, par exemple, l'hiron-"velle, celle que tout le monde connoit, qui paroit "au printems, disparaît en automne, & fait fon nid "avec de la terre contre les fenêtres, ou dans les "cheminees." p. 23.

It is very clear that the design in this period is to specify a particular bird in such a manner that no doubt could remain with any one about the species referred to; and from other passages which follow, it is as clear that Mons. de Buffon means to allude to the swallow ματ' εξοχαη.

Though this was certainly the intention of this most ingenious naturalist, it is to me very evident that the martin, and not the swallow, was in his contemplation, because he first speaks of the bird's building against windows, before he mentions chimneys, and therefore supposes that either place is indifferent; which is not the case, because the swallow seldom builds on the sides of windows, or the martin in chimneys.

There are perhaps three or four martins to one swallow in all parts; and from their being the more common bird of the two, as well as from the circumstance of their building at the corner of windows (and consequently being eternally in our sight), nine-

of the Royal Society, by the directors of the Hudson's Bay company.

These long feathers would be very inconvenient to the hen during incubation; and they are likewise confined to the cock widow-bird, as, from their more extraordinary length, they would be still more so.
teen out of twenty, when they speak of a swallow, really mean a martin *.

I only take notice of this supposed inaccuracy in Monf. de Buffon, because, if that able naturalist does not speak of the different sorts of swallows with that precision which is necessary upon such an occasion, why should he rely so entirely upon the impossibility of Monf. Adanson's being mistaken?

I shall now state the experiment of Monf. de Buffon, to prove that the swallow is not torpid in the winter, and must therefore migrate to the coast of Senegal †.

He shut up some swallows (birondelles) in an ice house, which were there confined "plus ou moins " de temps;" and the consequence was, that those which remained there the longest died, nor could they be revived by exposing them to the sun; and, that those " qui n'avoient souffert le froid de la " glaciere que pendant peu de tems" were very lively when permitted to make their escape.

* In the same manner the generic name in other languages, for this tribe of birds, always means the martin, and not the swallow.

Thus Anacreon complains of the κελίδων for waking him by its twittering.

Now if it be considered that there was only the kitchen chimney in a Grecian house, it must have been the martin which built under the eaves of the window, that was troublesome to Anacreon, and not the swallow.

Ovid also speaking of the nest of the birundo, says,

--- luteum sub trabe fitig opus.

by which he necessarily alludes to the martin, and not the swallow.

† Plan de l'ouvrage, p. 15.
Monf. de Buffon does not, in this account of his experiment, state the time during which the birds were confined; but as the trial must have been made in France, the swallows which he procured could not be expected to be torpid either in an ice-house* or any other place, because the season for their being in that state was not yet arrived.

I cannot also agree with M. de Buffon that those birds which were shut up the longest time died through cold, as he supposes, but for want of food, as he neither supplied them with any flies, nor, if he had, could the swallows have caught them in the dark: a very short fast kills these tender animals, which are feeding every instant when on the wing.

It therefore seems not to follow from this, or any other experiment, that swallows must necessarily migrate (as Monf. de Buffon supposes) to the coast of Senegal.

* The very name of an ice-house almost strikes one with a chill; I placed, however, a thermometer in one near Hyde Park Corner, on the 23d of November, where it continued 48 hours, and the mercury then stood at 43½ by Fahrenheit's scale.

This is therefore a degree of cold which swallows sometimes experience whilst they continue in some parts of Europe, without any apparent inconvenience; and it should seem that the cold vapours which may arise from the included ice, sink the thermometer only 7 or 8 degrees, as the temperature in approved cellars is commonly from 50 or 51 throughout the year.

Sir William Hamilton informs me, that he hath frequently seen swallows in the winter between Naples and Puzzuoli, when the weather was warm; as does Mr. Hunter, F. R. S. that he hath observed them during the same season, on the confines of Spain and Portugal. It should seem from this, that very mild and warm weather for any continuance always wakes these birds from their state of torpidity.

Swallows
Swallows are seen during the summer, in every part of Europe from Lapland to the Southern coast of Spain; nor is Europe vastly inferior in point of size to Africa.

If swallows therefore retreat to Africa in the winter, should not they be dispersed over the whole Continent of Africa, just as they are over every part of Europe?

But this most certainly is not so: Dr. Shaw, who was a very good naturalist and attended much to the birds in the neighbourhood of Algiers (as appears by his account of that country), makes no mention of any such circumstance, nor have we heard of it from any other traveller *

It must be admitted indeed, that Herodotus speaking of a part of upper Egypt (which he had never seen) says, that kites and swallows never leave it; this, however, totally differs from Mons. Adanson's account, who informs us that they disappear in Senegal on the approach of summer.

It seems to follow therefore, from this silence in others, that swallows cannot be accommodated for their winter residence in any part of that vast continent, but in the neighbourhood of Senegal.

But this is not the whole objection to such an hypothesis.

* It may also be observed here, that credit is in some measure given to M. Adanson's eyesight, against that of all the English, French, Dutch, Portuguese, and Danes, who have been settled not far from Senegal for above a century, many of which have spent the greatest part of their lives there, and whose notice, swallows seen during the winter, must have probably attracted.

† Ηδεον δέ και χελιδόνες δι' έλεος εὐόλες ευ πολεματι. Εὐτέρπη, p. 98. ed. Gale.
If the swallows of Europe, when they disappear in those parts, retreat to the coast of Senegal, what necessarily follows with regard to a Lapland swallow?

I will suppose such a bird to have arrived safely at his winter quarters upon the approach of that season in Lapland; but he must then, according both to Monf. Adanson's and de Buffon's account, return to Lapland in the spring, or at least some other swallow from Senegal fill his place*.

Such a bird immediately upon its arrival on the Southern coast of Spain would find the climate and food which it desired to attain, and all proper conveniences for its nest: what then is to be its inducement for quitting all these accommodations which it meets with in such profusion, and pushing on immediately over so many degrees of European continent to Lapland, where both martin and swallow can procure so few eaves of houses to build upon? What also is to be the inducement to these birds, when they have arrived at that part of the Norwegian coast which is opposite to the Ferroe islands, to cross degrees of sea, in order

* Mr. Stephens, A. S. S. informs me, that there was a nest of martins for twenty years together in the hall of his house in Somersetshire (near Bath); nor could the old birds procure food either for themselves, or their young, till the door was opened in the morning.

Can it be supposed that the same birds or their descendants could have so long fixed upon so very inconvenient a spot, to which they constantly returned from the coast of Africa, neglecting so many others, which they must have always passed by? Does it not also afford a most strong presumption, that they were torpid during winter in the neighbourhood of this old hall?
to build in such small spots of land, where there are still fewer houses?

The next fact I have happened to meet with of a bird's being seen at a considerable distance from the shore, is in Mr. Forster's lately published translation of Kalm's account of N. America*.

We are there informed that a bird (which Kalm calls a swallow) was seen near the ship on the 2d of September, and, as he supposes, 20 degrees from the continent of America†.

It appears however, by what he before states in his journal, that the ship was not above 5 degrees from the island of Sable.

Besides, if it is contended that this was an European swallow on its passage across the Atlantic on the 2d of September, it is too early even for a swift, to have been on its migration, which disappears with us sooner than the three other species of European swallows‡.

Only two more instances have occurred of birds being seen in open sea that have been described

† It may not be improper here to observe, that in all instances of birds being seen at sea any great distance from the coast, it is not improbable that they may have before settled on some other vessel, or perhaps on a piece of floating wreck.

By accidents of this sort, even butterflies have sometimes been caught by the sailors at 40 leagues distance from any land. See Monf. l'Abbé Courte de la Blanchadiere's Voyage to Brazil, Paris, 1759, 21mo. p. 169.
‡ The bird mentioned by Kalm was probably an American swallow, forced out to sea by some accidental storm: there are several species of them and they seem to bear a general affinity to those of Europe.
with any sort of precision, which I shall just state, as I would not decline giving the best answer I am able to every argument and fact which may be relied upon, by those who contend that birds periodically migrate across oceans.

On the 30th of March, 1751, Ofbeck, in his voyage from Sweden to China *, met with a single house swallow near the Canary Islands, which was so tired that it was caught by the sailors: Ofbeck also states, that though it had been fine weather for several preceding days, the bird was as wet as if it had just emerged from the bottom of the sea.

If this instance proves anything, it is the submersion and not the migration of swallows so generally believed in all the northern parts of Europe. It would swell this Letter to a most unreasonable size, to touch only upon this litigated point; and I shall, for the present, suppress what hath happened to occur to me on this controverted question †.

* See the lately published translation of this voyage.
† I will, however, mention one most decisive fact on this head.

Mr. Stephens, A. S. S. informs me, that, when he was fourteen years of age, a pond of his father's (who was vicar of Shrivenham in Berkshire) was cleaned, during the month of February; that he picked up himself a cluster of three or four swallows (or martins), which were caked together in the mud, and that he carried them into the kitchen, on which they soon afterwards flew about the room, in the presence of his father, mother, and others. Mr. Stephens also told me, that his father (who was a naturalist) observed at the time, he had read of similar instances in the northern writers. This fact is also confirmed to me by the Reverend Dr. Pye, who was then at school in Shrivenham, as also by a very sensible land-surveyor, who now lives in the village.

Vol. LXII. Pp Ofbeck
Olbeck afterwards, in the course of his voyage, mentions, that a swallow (indefinitely) followed the ship, near Java, on the 24th of July, and another on the 14th of August, in the Chinese sea, as he terms it.

After what I have observed before with regard to other instances of the same fort, I need scarcely say, that this naturalift does not state of what species these swallows were; and that, from the latitudes in which they were seen, they must have been some of the Asiatic kinds.

I cannot, however, dismiss this article of the swallow, without adding some general reasons, which seem to prove the great improbability of this or any other bird’s periodically migrating over wide tracts of sea; and I the rather do it in this place, because

There are several reasons why swallows should not be frequently thus found; ponds are seldom cleaned in the winter, as it is such cold work for the labourers; and the same instinct which prompts the bird thus to conceal itself, instructs it to choose such a place of security, that common accidents will not discover it.

But the strongest reason for such accounts not being more numerous, is, that facts of this fort are so little attended to; for though I was born within half a mile of this pond, and have always had much curiosity with regard to such facts, yet I never heard a syllable about this very material and interesting account, till very lately.

To this fact I must also add, that swallows may be constantly taken in the month of October, during the dark nights, whilst they fit on the willows in the Thames, and that one may almost instantaneously fill a large sack with them, because at this time they will not stir from the twigs, when you lay your hands upon them. This looks very much like their beginning to be torpid before they hide themselves under the water.

A man near Brentford says, that he hath caught them in this state in the eyt opposite to that town, even so late as November.
the swallow is commonly pitched upon as the most notorious instance of such a regular passage.

This seems to arise first from its being seen in such numbers during the summer, from its appearing almost always on the wing, and from its feeding in that position; from which two latter circumstances it is supposed to be the best adapted for such distant migrations.

And first, let us consider, from the few facts or reasons we have to argue from, what length of flight either a swallow or any other bird is probably equal to.

A swallow, it is true, seems to be always on the wing; but I have frequently attended, as much as I could, on a particular one; and it hath appeared to me, that the bird commonly returned to its nest in eight or ten minutes: as for extent of flight, I believe I may venture to say, that these birds are seldom a quarter of mile from their mate or young ones; they feed whilst on the wing, and are perpetually turning short round to catch the insects, who endeavour to elude them as a hare does a greyhound.

It therefore seems to me, that swallows are by no means equal to long flights, from their practice during their summer residence with us.

I have long attended to the flight of birds; and it hath always appeared to me, that they are never on the wing for amusement (as we walk or ride), but merely in search of food.

The only bird which I have ever observed to fly without any particular point of direction, is the rook: these birds will, when the wind is high,
“Ride in the whirlwind, and enjoy the storm.”

They never fly, however, at this time, from point to point, but only tumble in the air, merely for their diversion.

It seems, therefore, that birds are by no means calculated for flights across oceans, for which they have no previous practice; and they are, in fact, always so fatigued, that, when they meet a ship at sea, they forget all apprehensions, and deliver themselves up to the sailors.

Let us now consider another objection to the migration of the swallow, which Mons. de Buffon supposes may cross the Atlantic to the Line in eight days; and this not only from the want of rest, but of food, during the passage.

A swallow, indeed, feeds on the wing: but where is it to find any insects, whilst it is flying over a wide expanse of sea? This bird, therefore, if it ever attempted so adventurous a passage, would soon feel a want of food, and return again to land, where it had met with a constant supply from minute to minute.

I am aware it may be here objected, that the swallow leaves us on the approach of winter, when soon no flying insects can be procured: but I shall hereafter endeavour to shew, that these birds are then torpid, and, consequently, can want no such food.

Another objection remains to the hypothesis of migration, which is, that birds, when flying from

* Discours sur la nature des oiseaux, p. 32.
point to point, endeavour always to have the wind against them *, as is periodically experienced by the London bird-catchers, in March and October, when they lay their nets for singing birds †.

The reason, probably, for birds thus flying against the wind is, that their plumage may not be ruffled, which indeed I have before had occasion to mention.

Let us suppose, then, a swallow to be equal to a passage across the Atlantic in other respects; how is the bird to be insured of the wind’s continuing for days in the same quarter; or how is he to depend upon its continuing to blow against his flight with moderation? for who can suppose that a swallow can make his way to the point of direction, when buffeted by a storm blowing in the teeth of his intended passage ‡?

Lastly, can it be conceived that these, or any other birds, can be impelled by a providential instinct, regularly to attempt what seems to be attended with such insuperable difficulties, and what most frequently leads to certain destruction?

But it will still be objected, that as swallows regularly appear and disappear at certain seasons, it is incumbent upon those who deny their migration, to

* Kalm, in his voyage to America, makes the same observation, with regard to flying fish, and Valentine says, that if the wind does not continue to blow against the bird of paradise, it immediately drops to the ground.
† These birds, as it should seem, are then in motion; because, at these seasons, the ground is plowed either for the winter or lent corn.
‡ I have myself attended to swallows during a high wind, and have observed that they fly only in sheltered places, whilst they almost touch the surface of the ground.
fl ew what becomes of them in Europe during our winter.

Though it might be answered, that it is not necessary, those who endeavour to shew the impossibility of another system or hypothesis, should from thence be obliged to set up one of their own; yet I shall, without any difficulty, say, that I at least am convinced swallows (and perhaps some other birds) are torpid during the winter.

I have not, I must own, myself ever seen them in this state; but, having heard instances of their being thus found, from others of undoubted veracity, I have not scarcely the least doubt with regard to this point.

It is, indeed, rather difficult to conceive why some ornithologists continue to withhold their assents to such a cloud of witnesses, except that it perhaps contradicts a favourite hypothesis which they have already maintained.

Why is it more extraordinary that swallows should be torpid during the winter, than that bats are found in this state, and so many insects, which are the food of swallows?

But it may be said, that as the swallows have crowded the air during the summer, in every part of Europe since the creation, and as regularly disappear in winter, why have not the instances of their being found in a torpid state been more frequent?

To this it may be answered, that though our globe may have been formed so many centuries, yet the inhabitants of it have scarcely paid any attention to the study of natural history, but within these late years.

As
As for the ancient Greeks and Romans, their dress prevented their being so much in the fields as we are; or, if they heard of a rather extraordinary bird in their neighbourhood, they had not a gun to shoot it: the only method of attaining real knowledge in natural history, depends almost entirely upon the having frequent opportunities of thus killing animals, and examining them when dead.

If they did not stir much in their own country, much less did they think of travelling into distant regions; want of bills of exchange, and of that curiosity which arises from our being thoroughly acquainted with what is near us at home, probably occasioned this; to which may also be added, the want of a variety of languages: scarcely any Greek seems to have known more than his own tongue, nor Roman more than two *

Aristotle, indeed, began something like a system of natural history, and Pliny put down, in his common place-book, many an idle story; but, before the invention of printing, copies of their works could not be so generally dispersed, as to occasion much attention to what might be interesting facts for the natural historian.

In the sixteenth century, Gesner, Belon, and Aldrovandus, published some materials, which might be of use to future naturalists; but, in the seventeenth, Ray and Willoughby first treated this extensive branch of study, with that clearness of method, *

* It need be scarcely here mentioned also, that their navigation was confined to the Mediterranean, from the compass not having been then discovered.
perspicuity of description, and accuracy of observation, as hath not, perhaps, been since exceeded.

The works of these great naturalists were soon dispersed over Europe, and the merit of them acknowledged; but it so happened, that Sir Isaac Newton's amazing discoveries in natural philosophy making their appearance about the same time, engaged entirely the attention of the learned.

In process of time, all controversy was silenced by the demonstration of the Newtonian system; and then the philosophical part of Europe naturally turned their thoughts to other branches of science.

Since this period, therefore, and not before, natural history hath been studied in most countries of Europe; and consequently, the finding swallows in a state of torpidity, or on the coast of Senegal, during the winter, begins to be an interesting fact, which is communicated to the world by the person who observes it.

To this I may add, that the common labourers, who have the best chance of finding torpid birds, have scarcely any of them a doubt with regard to this point; and consequently, when they happen to see them in this state, make no mention of it to others; because they consider the discovery as neither uncommon or interesting to any one.

Molyneux, therefore, in the Philosophical Transactions *, informs us, that this is the general belief of the common people of Ireland, with regard to land-rails; and I have myself received the same answer from a person who, in December, found swallows torpid in the stump of an old tree.

* Phil. Trans. abr. Vol. II. p. 853. Another
Another reason why the instances of torpid swallows may not be expected so frequently, is, that the instinct of secreting themselves at the proper season of the year, likewise suggests to them, it's being necessary to hide themselves in such holes and caverns, as may not only elude the search of man, but of every other animal which might prey upon them; it is not therefore by any common accident that they are ever discovered in a state of torpidity.

Since the study of natural history, however, hath become more general, proofs of this fact are frequently communicated, as may appear in the British Zoology*.

That it may not be said, however, I do not refer to any instance which deserves credit, if properly sifted, I beg leave to cite the letter from Mr. Achard to Mr. Collinson, printed in the Philosophical Transactions †, from whence it seems to be a most irrefragable fact, that swallows ‡ are annually discovered in a torpid state on the banks of the Rhine. I shall also refer to Dr. Birch's History of the Royal Society ||, where it is stated, that the celebrated Harvey dissected

† 1763, p. 101.
‡ "Swallows or martins," are Mr. Achard's words, which I the rather mention, because Mr. Collinson complains that the species is not specified.
Mr. Collinson himself had endeavoured to prove, that sand martins are not torpid, Phil. Trans. 1760, p. 109. and concludes his letter, by supposing that all the swallow tribe migrates, therefore the swift is the only species remaining; for his friend Mr. Achard shews to demonstration, that swallows or martins are torpid; he does not, indeed, precisely state which of them.
|| Vol. IV. p. 537.
Vol. LXII. Q q some,
some, which were found in the winter, under water, and in which he could not observe any circulation of the blood *.

Assuming it, therefore, from these facts, that swallows have been found in such a state, I would ask the partisans of migration, whether any instance can be produced where the same animal is calculated for a state of torpidity and, at the same time of the year, for a flight across oceans?

But it may be urged, possibly, that if swallows are torpid when they disappear, the same thing should happen with regard to other birds, which are not seen in particular parts of the year.

To this I answer, that this is by no means a necessary inference: if, for example, it should be insisted that other birds besides the cuckow are equally careless with regard to their eggs, it would be immediately allowed that the argument arising from

* As the swallows were found in the winter, they must have been in a state of torpidity, as otherwise the animals must have been putrid.

I shall likewise here refer to Phil. Trans. abr. Vol. V. p. 33, where Mr. Derham says, that he heard a swift squeak in an hole of his house on the 17th of April; but that, the weather being cold, it did not stir abroad for several days.

This seems to be a strong instance of a bird's first waking from a state of torpidity, but resuming its sleep on the weather being severe.

I shall close the proofs on this head (which I could much enlarge) by the dignified testimony of Sigismond, King of Poland, who affirmed on his oath, to the cardinal Commendon, that he had frequently seen swallows, which were found at the bottom of lakes. See the life of cardinal Commendon, p. 211. Paris, 1671. 4to.
such supposed analogy could by no means be relied upon *.

It is possible, however, that some other birds, which are conceived to migrate, may be really torpid as well as swallows; and if it be asked why they are not sometimes also seen in such a state during the winter, the answer seems to be, that perhaps there may be a thousand swallows to any other sort of bird, and that they commonly are found torpid in clusters.

* I here suppose the common notion about the cuckow to be true; because both learned and ignorant seem equally to agree in the fact.

During the present summer, however, a girl brought a full feathered young cuckow to a gentleman's house, where I happened to be, who said, that it had been for several days before fed by another bird of equal size with itself, which therefore could not be a hedge-sparrow, or other small bird, but the parent cuckow.

I have also lately been favoured, by Mr. Pennant, with the following extract from a manuscript of Derham's on instinct.

"The Rev. Mr. Stafford was walking in Glossop-dale in the Peak of Derbyshire, and saw a cuckow rise from its nest, which was on the stump of a tree, that had been some time felled, so as much to resemble the colour of the bird. In this nest were two young cuckows, one of which he fastened to the ground, by means of a peg and line, and very frequently, for many days, beheld the old cuckow feed these her young ones."

It is not impossible, therefore, that this most general opinion will turn out like the supposed effects of the venom of the tarantula; and, indeed, it is difficult to conceive how so small a bird as a hedge-sparrow can feed a cuckow: it is also remarkable, that the witnesses often vary about the species of small bird thus employed.

It is possible, however, that the cuckow (though it may not hatch its young) may feed them, when grown too large for the foster parent.
If a single bird of any other kind happens to be seen in the winter, without motion or apparent warmth, it is immediately conceived that it died by some common accident.

I shall, however, without any reserve, say, that I rather conceive the notion which prevails with regard to the migration of many birds, may most commonly arise from the want of observation, and ready knowledge of them, when they are seen on the wing, even by professed ornithologists.

It is an old saying, that “a bird in the hand is worth two in the bush;” and this holds equally with regard to their being distinguished, when those even who study natural history, have but a transient sight of the animal *

If, therefore, a bird, which is supposed to migrate in the winter, passes almost under the nose of a Linnaean, he pays but little attention to it, because he cannot examine the beak, by which he is to class the bird. Thus I conceive, that the supposing a nightingale to be a bird of passage arises from not readily distinguishing it, when seen in a hedge, or on the wing †.

This bird is known to the ear of every one, by its most striking and capital notes, but to the eye of very few

* An ingenious friend of mine makes always a very proper distinction between what he calls in-door and out-door naturalists.

Thomas Willifel, who assisted Ray and Willughby much with regard to the natural history of the animals of this island, never stirred anywhere without his gun and fishing-tackle.

† No two birds fly in the same manner, if their motions are accurately attended to.
few indeed; because the plumage is dull, nor is there any thing peculiar in its make.

The nightingale sings perhaps for two months *, and then is never heard again till the return of the spring, when it is supposed to migrate to us from the continent, with redstarts, and several other birds.

That it cannot really do so, seems highly probable, from the following reasons.

This bird is scarcely ever seen to fly above twenty yards, but creeps at the bottom of the hedges, in search of maggots, and other insects, which are found in the ground.

If the swallow is not supplied with any food during its passage across oceans, much less can the nightingale be so accommodated; and I have great reason to believe, from the death of birds in a cage, which have had nothing to eat for twenty-four hours, that these delicate and tender animals cannot support a longer fast, though using no exercise at all.

To this I may also add, that those birds which feed on insects are vastly more feeble than those whose bills can crack feed, and consequently, less capable of bearing any extraordinary hardships or fatigue.

But other proofs are not wanting, that this bird cannot migrate from England.

* Whilst it sings even, the bird can seldom be distinguished, because it is then almost perpetually in hedges, when the foliage is thickest, upon the first burst of the spring, and when no insects can as yet have destroyed considerable parts of the leaves.
Nightingales are very common in Denmark, Sweden, and Russia*, as also in every other part of Europe, as well as Asia, if the Arabic name is properly translated.

Now, if it is supposed that many of these birds which are observed in the southern parts of England, cross the German sea, from the opposite coast of the continent; why does not the same instinct drive those of Denmark to Scotland, where no such bird was ever seen or heard †?

But these are not all the difficulties which attend the hypothesis of migration; nightingales are agreed to be scarcely ever observed to the westward of Dorsetshire, or in the principality of Wales ‡, much less in Ireland.

I have also been informed, that these birds are not uncommon in Worcestershire, whereas they are excessively rare (if found at all) in the neighbouring county of Hereford.

Whence, therefore, can it arise, that this bird should at one time be equal to the crossing of seas, and at other times not travel a mile or two into an adjacent county? Does it not afford, on the other hand, a strong proof, that the bird really continues

* See Dr. Birch's History of the Royal Society, Vol. III. p. 189. Linnaei Fauna Suecica. and Biographia Britannica, art. FLETCHER; where it is said, that they have in Russia a greater variety of notes than elsewhere.
† Sir Robert Sibbald, indeed, conceives the nightingale to be a bird of North Britain; but, if I can depend upon many concurrent testimonies, no such bird is ever seen or heard so far northward at present, nor could I ever trace them in that direction further than Durham.
‡ I have, however, frequently seen the nightingale's congener (and supposed fellow-traveller) the redstart in Wales.
on the same spot during the whole year, but happens not to be attended to, from the reasons I have before suggested?

I am therefore convinced, that if I was ever to live in the country during the winter, I should see nightingales, because I should be looking after them, and I am accordingly informed, by a person who is well acquainted with this bird, that he hath frequently observed them during this season. *

If it be asked, why the nightingales are all this time mute? the answer is, that the same silence is experienced in many other birds, and this very muteness is, in part the cause why the bird is not attended to in winter.

I must now ask those who contend for the migration of a nightingale, what is to be its inducement for crossing from the continent to us? a swallow, indeed, may want flies in winter, if it stays in England; but a nightingale is just as well supplied with insects on the continent, as it can be with us after its passage.†. I must also ask, in what other part of

* I find they have also been seen in France during the winter. See a treatise, intitled, Aëdologue, Paris 1751. p. 23.
† I have omitted the mention of a more minute proof, that this bird cannot migrate from the continent, from the having kept them for some years in a cage, and having been very attentive to their song.

Kircher (in his Musurgia) hath given us the nightingale's notes in musical characters, from which it appears that the song of a German nightingale differs very materially from that of an English one: now, if there was a communication by migration between the continent and England, the song of these birds would not so materially differ, as I may, perhaps, shew, by some experiments I have made, in relation to the notes of birds.

I have before mentioned, that Mr. Fletcher, who was embassador from England to Russia in the time of Queen Elizabeth, the
the world this bird is seen during the winter? must it migrate to Senegal with the swallow?

I am persuaded likewise, that the cuckow never migrates from this island any more than the nightingale: this bird is either probably torpid in the winter, or otherwise is mistaken for one of the smaller kind of hawks*; which it would be likewise in the spring, was it not for its very particular note at that time, and which only lasts during courtship, as it does with the quail.

If there is fine weather in February, this bird sometimes makes this sort of call to its mate, whilst it is supposed to continue still on the continent.

An instance is mentioned by Mr. Bradley †, of not only a single cuckow, but several, which were heard in Lincolnshire, during the month of February; and that able naturalist Mr. Pennant informs me, another was heard near Hatcham in Shropshire, on the 4th of February in the present year ‡.

observed that the song of the Russian nightingale differed from that of the English.

* Mr. Hunter, F. R. S. informs me, that he hath seen cuckows in the island of Belleisle during the winter, which is not situated so much to the southward, as to make it improbable that they may equally continue with us.

‡ Mr. Pennant received this account from Mr. Plimly, of Longnor in Shropshire.

Thus likewise Mr. Edwards informs us, that the sea fowls near the Needles, which are commonly supposed to migrate in winter, appear upon the weather's being very mild. Essays, p. 197.
It is amazing how much the being interested to
discover particular objects contributes to our readily
distinguishing them.

I remember the being much surprized that a grey-
headed game-keeper always saw the partridge on the
ground before they rose, when I could not do the
same. He told me, however, that the reason was,
I lived in a time when the shooter had no occasion
to give himself that trouble.

He then further explained himself, by saying,
that when he was young, no one ever thought of
aiming at a bird when on the wing, and conse-
quently they were obliged to see the game before it
was sprung. He added, that from this necessity he
could not only distinguish partridges, but snipes and
woodcocks, on the ground.

Another instance of the same kind, is the great
readiness with which a person, who is fond of courting,
finds a hare sitting in her form: those, however, who
are not interested about such sport, can scarcely see
the hare, when it is under their nose, and pointed
out to them.

But more apparent objects escape our notice, when
we are not interested about them.

Ask any one, who hath not a botanical turn, what
he hath seen in passing through a rich meadow, at
the time it is most enamelled with plants in flower;
and he will tell you, that he hath observed nothing but
gras and daisies. If most gardeners even are in like
manner asked whether the flowers of a bean grow on
every side of the stalk, they will suppose that they do,
whereas they, in reality, are only to be found on one side.

The mouths of flounders are often turned different ways, which one would think could not well escape the observation of the London fishmongers; yet, upon asking several of them whether they had attended to this particular, I found they had not, till I shewed them the proof in their own shops.

A fishmonger, however, knows immediately whether a fish is in good eating order or not, on the first inspection; because this is a circumstance which interests him.

I shall, however, by no means suppress two arguments in favour of migration, which seem to require the fullest answer that can be given to them.

The first is, that there are certain birds, which appear during the winter, but disappear during the summer; and it may be asked, where such birds can be supposed to breed, if they do not migrate from this island.

These birds are in number four, viz; the snipe, woodcock, redwing, and fieldfare.

As for the snipe, I have a very short answer to give to the objection, as far as it relates to this bird; because it constantly breeds in the fens of Lincolnshire, Wolmar forest, and Bodmyn downs; it is therefore highly probable, that it does the same in almost every county of England.

I must own, however, that, till within these few years, I conceived the nest of a snipe was as rarely seen in England, as that of a woodcock or fieldfare; and that able ornithologist Mr. Edwards supposes this to be
be the fact, in the late publication of his ingenious Essays on Natural History *.

Woodcocks likewise are known to build in some parts of England every year; but, as the instances are commonly those of a single nest, I would by no means pretend to draw the same proof against the summer migration of this bird, as in the former case of the snipe.

I will most readily admit, that these accidental facts are rather to be accounted for, perhaps, from the whimsy or silliness of a few birds, which occasions their laying their eggs in a place where they are easily discovered, and contrary to what is usual with the bulk of the species.

I remember to have seen a duck's nest once on the top of a pollard willow, near the decoy in St. James's Park; it would not be, however, fair to infer from such an instance, that all ducks would pitch upon the same very improper situation for a nest, upon which it is difficult to conceive how a web-footed bird could settle.

Some silly birds likewise now and then choose a place for building, which cannot escape the observation of either man or beast, as he passes by.

I therefore suppose that the few proofs of woodcocks nests having been found in England, arise either from one or other of these two causes, and all which they seem to prove is, that our climate in summer is not absolutely improper for them.

It is to be observed, however, that Mr. Catesby considers such instances as of equal force against the

* P. 72.

migration
migration of the woodcock, as of the snipe ῶ. Willughby also says, that Mr. Jeffop saw young woodcocks fold at Sheffield (which rather implies a certain number being brought to market), and that others had observed the same elsewhere †.

We are, indeed, informed by Scopoli ‡, that they breed constantly in Carniola, which is considerably to the southward of any part of England: our country is therefore certainly not too hot for them.

Woodcocks appear and disappear almost exactly about the same time in every part of Europe, and perhaps Africa ||: heat and cold, therefore, seem not to have any operation whatsoever with regard to the supposed migration of this bird.

But it may be said, what signifies proving the probability of woodcocks breeding in England, if it is not a known fact that they do so?

To this it should seem there are several answers, as it is equally incumbent upon those who contend for migration, to shew that these birds were ever seen on such passage.

Another answer is, ask ninety-nine people out of a hundred, whether snipes ever make a nest in England; and they will immediately say, that they do not; so little are facts or observations of this sort attended to.

But I shall now endeavour to give some other reasons why woodcocks may not only continue with us,

† B. iii. c. 1.
‡ Ornith. Leip̄g, 1769.
§ Shaw's Trav. Phyl. Obs. ch. ii.
during the summer, but also breed in large tracts of wood or bog, without being observed.

In the other parts of Europe, all birds almost are considered as game, or, at least, are eaten as wholesome food. Ray therefore mentions, that hawks and owls are sold by the poulterers at Rome; every sort of small bird also is equally the foreign fowler's object *

An Englishman does not consider, on the other hand, perhaps twelve kinds of birds worthy his attention, or expence of powder, none of which are ever shot in our woods during the summer, nor are birds then disturbed by felling either coppice or timber.

But it will be said, why are not woodcocks sometimes seen, however, as they may be supposed to leave their cover in search of food?

To this I answer, that woodcocks sleep always in the daytime, whilst with us in the winter, and feed only during the night †. Whenever a woodcock, therefore, is flushed, he is roused from his sleep by the spaniel or sportsman, and then takes wing, because there are no leaves on the trees to conceal the bird.

Whoever hath looked attentively at a woodcock's eye, must see that, from the appearance of it, the

* In one of Boccace's Novels, a lover, who lives at Florence, drestes a falcon for the dinner of his mistress. Giorn a V. Novel, IX.
† Almost all the wild fowl of the duck kind also sleep in the daytime, and feed at night.
flight must be more calculated to distinguish objects by night than by day *.

The fact therefore is notorious to those who cut glades in their woods, and fix nets for catching these birds, that they never stir but as it begins to be dark, after which they return again by day-break, when their flight even then is so indifferent, that they strike against the net, and thus become entangled.

No one with us ever thinks of fixing or attending such nets in summer for woodcocks, because it is not then supposed that there is any such bird in the island; if they tried this experiment, however, I must own that I believe they would have sport †.

Mr. Reinhold Forster, F. R. S. who is an able naturalist, informs me, that the fowlers in the neighbourhood of Dantzick kill many woodcocks about St. John's day (or Midsummer), in the following man-

* I conceive also, it is from the eyes looking so dull, that this bird is generally considered as being so foolish: hence the Africans call the woodcock *hammar el badge*, or the partridge's afs. Shaw's Phys. Obs. ch. ii.

† I would ask those who will probably laugh at the very idea of such sport (which I do not, however, absolutely infer), whether, if I was to send them to any part of the British coast to catch the true anchovy, or tunny fish, they would not suppose equally that it was a fool's errand.

Notwithstanding, however, this incredulity, I can produce the authority of both Ray (Syn. Pisc. p. 107.) and Mr. Pennant (Brit. Zool. ill. p. 34. 36.), that the true anchovy is caught in the sea not far from Chester, and the tunny fish on the coast of Argyleshire, together with the herrings, where they are called *mackrel fture*.

Is it not amazing, however, that a fish of such a size as the tunny should never have been heard of, even by the Scotch naturalist Sir Robert Sibbald?
ner, and that they continue to do so till the month of August.

They wait on the side of some of the extensive woods in that neighbourhood, before day-break, for the return of the woodcock from his feeding in the night-time, and always depend upon having a very good chance of thus shooting many of them.

The Dantzickers, however, might be employed the whole summer near these woods in the daytime, without ever seeing such a bird; and it seems therefore not improbable, that it arises from our not waiting for them at twilight or day-break, that they are never observed by Englishmen in the summer. If this bird should, however, be seen in the night, it is immediately supposed to be an owl, which a woodcock does not differ much from in its flight.

To these reasons for woodcocks not being observed, it may be added, that the bird is believed to be absolutely mute, and consequently, never discovers itself by its call.

If it be still contended, that the nest or young must sometimes be stumbled upon, though in the centre of extensive woods, or large bogs, the fifkin (or aberdavine *) is a much more extraordinary instance of concealing its nest and young.

The plumage of this bird is rather bright than otherwise; and the song, though not very pleasing, yet is very audible, both which circumstances should discover it at all times; yet Kramer † informs us, that, though immense numbers breed annually on

† Elenchus Animalium per Austria, p. 261. Vienna, 1756.
the banks of the Danube, no one ever observed the neft.

This bird is rather uncommon in England; so that if I ask when the neft was ever found within the verge of the iland, it may be considered as rather an unfair challenge.

There is another bird, however, called a red-poll *, which is taken in numbers during the Michaelmas and March flights by the London bird-catchers, whose neft, I believe, was never discovered in England, though I have seen them in pairs during the summer, both in the mountainous parts of Wales and highlands of Scotland †.

But I shall now mention another proof that woodcocks breed in England.

The Reverend Mr. White, of Selborn, who is not only a well-read naturalist, but an active sportsman, informs me, that he hath frequently killed woodcocks in March, which, upon being opened, had the rudiments of eggs in them, and that it is usual at that time to flush them in pairs. Willughby also observes the same ‡.

This bird, therefore, certainly pairs before its supposed migration; and can it be conceived that this strict union (which birds in a wild state so faithfully adhere to) ||, should take place before they

† This elegant little bird is very common in Hudson's Bay, where it feeds chiefly on the birch trees; which being more common in the northern than southern parts of Great Britain, may account for the bird's being more often seen northward.
‡ B. III. c. i.
|| It is believed that no mule-bird was ever seen in a wild state, notwithstanding M. de Buffon suspects many an intrigue
traverse oceans, and when they cannot as yet have pitched upon a proper place for concealing their nest and nestlings?

Let us examine if this intercourse before migration takes place in other birds, which are supposed to cross wide extents of sea: and a quail affords such proof.

I have been present when these birds have been caught in the spring, which always turn out to be males, and are enticed to the nets by the call of the hen; quails therefore pair after they appear in England.

But I shall now consider the other two instances of birds which are seen with us in the winter, and are not observed in the summer; I mean, the fieldfare and redwing.

And first, let us examine, where these birds are actually known to breed: the northern naturalists say, in Sweden; Klein, in the neighbourhood of Dantzick, which is only in lat. 54° 30' *; and Wullughby, in Bohemia.

in the recesses of the woods (Hist. Nat. des Oiseaux, tom. I.) such irregular intercourse is only observed in cages and aviaries, where birds are not only confined, but pampered with food.

* See Klein, de Avibus Erraticis, p. 178: Klein, however, cites Zornius, who lived in the same part of Germany, and who affirms that the turtus iliacus (or redwing) leaves those parts in the spring. The circumstance therefore of the redwing's breeding in numbers (per multitudines) had escaped the notice of Zornius, though he hath written a dissertation on this question.

Is it at all surprizing, after this, that such discoveries, if made at all, should not be commonly heard of?

Vol. LXII. S 8. As
As they therefore build their nests in more Southern parts of Europe, there is certainly no natural impossibility of their doing so with us; though, I must own, I never yet heard but of one instance, which was a fieldfare's nest found near Paddington.*

I cannot, however, but think it is only from want of observation, that more of such nests have not been discovered, which are only looked after by very young children; and the chief object is the eggs, or nestlings, not the bird which lays them †.

The plumage therefore and flight of the fieldfare or redwing being neither of them very remarkable, it is not at all improbable they may remain in summer, without being attended to; and particularly the redwing, which scarcely differs at all in appearance from other thrushes. Thus the cough is by no means peculiar to Cornwall, as is commonly supposed, but is mistaken for the jackdaw, or rook.

But it may be said, that these birds fly in flocks during the winter, and if they remain here during the summer, we should see them equally congregate.

* See also Harl. Misc. Vol. II. p. 561.
† Many birds also build in places of such difficult access, that boys cannot climb to; birds' nestling is confined almost entirely to hedges, and low shrubs.
This circumstance, however, is by no means peculiar to the fieldfare and redwing; most of the hard-billed singing birds do the same in winter, but separate in summer, as it is indeed necessary all birds should during the time of breeding.

I shall now consider another argument in favour of migration, which I do not know hath been ever insisted upon by those writers who have contended for it, and which at first appearance seems to carry great weight with it.

There are certain birds, which are supposed to visit this island only at distant intervals of years; the Bohemian chatterer and cross-bill * (for example) once perhaps in twenty.

The fact is not disputed, that such birds are not commonly observed in particular spots from year to year; but this may arise from two causes, either a partial migration within the verge of our island, or perhaps more frequently from want of a ready knowledge of birds on the wing, when they happen to be seen indeed, but cannot be examined.

I never have disputed such a partial migration; and indeed I have received a most irrefragable proof of such a flitting, from the Rev. Mr. White of Selborn in Hampshire, whose accurate observations I have before had occasion to argue from.

* This bird changes the colour of its plumage at different seasons of the year, which is sometimes red.

The first account we have of their being seen, is in the Ph. Tr. abr. Vol. V. p. 33. where Mr. Edward Lhwyd suspects them to be Virginia nightingales, from their feathers being red, and had no difficulty of at once supposing that they had crossed the Atlantic.
The rock (or ring-ouzel) hath always hitherto been considered as frequenting only the more mountainous parts of this island: Mr. White, however, informs me that there is a regular migration of these birds, which flock in numbers, and regularly visit the neighbourhood of Selborn, in Hampshire.*

I therefore have little doubt but that they equally appear in others of our Southern counties; though it escapes common observation, as they bear a sort of general resemblance to the black-bird, at least to the hen of that species.

I own also, that I always conceived the Bohemian chatterer was not observed in Great Britain but at very distant intervals of years, and then perhaps only a single bird, whereas Dr. Ramsay (professor of natural history at Edinburgh) informs Mr. Pennant, that flocks of these birds appear constantly every year in the neighbourhood of that city †.

As for cross-bills, they are seen more and more in different parts of England, since there have been so many plantations of firs: this bird is remarkably fond of the seeds of these trees, and therefore changes its place to those parts where it can procure the greatest plenty of such food ‡.

* See also Br. Zool. Ill. p. 56.
† These birds are said to be particularly fond of the berries of the mountain-ash, which is an uncommon tree in the Southern parts of Great Britain, but by no means so in the North.
‡ This bird should also, for the same reason, be found from year to year in the cider counties, if it was true (as is commonly supposed) that he is particularly fond of the kernels of
This flitting therefore by no means amounts to a total and periodical migration over seas, but is no more than what is experienced with regard to several birds.

For example, the British Zoology informs us *, that, at an average, 4000 dozen of larks are sent up from the neighbourhood of Dunstable, to supply the London markets; nor do I hear, upon inquiry, that there is any complaint of the numbers decreasing from year to year, notwithstanding this great consumption.

I should not suppose that 50 dozen of skylarks are caught in any other county of England; and it should therefore seem that the larks from the more adjacent parts crowd in to supply the vacuum occasioned by the London Epicures, which may be the cause possibly of a partial migration throughout the whole island.

I begin now to approach to something like a conclusion of this (I fear) tedious dissertation: I think, however, that I should not omit what appears to me at least as a demonstration, that one bird, which is commonly supposed to migrate across seas, cannot possibly do so.

apples, which it is conceived he can instantly extract with his very singular bill.

Mr. Tunstall, F. R. S. however, at my desire, once placed an apple in the cage of a cross-bill, which he had kept for some time in his very valuable and capital collection of live birds: upon examining the apple a fortnight afterwards, it remained untouched.

* P. 235.

A landrail
A landrail *, when put up by the shooter, never flies 100 yards; its motion is excessively slow, whilst the legs hang down like those of the water fowls which have not web feet, and which are known never to take longer flights.

This bird is not very common with us in England, but is excessively so in Ireland, where they are called corn-creaks.

Now those who contend that the landrail, because it happens to disappear in winter, must migrate across oceans, are reduced to the following dilemma.

They must first either suppose that it reaches Ireland periodically from America; which is impossible, not only because the passage of the Atlantic includes so many degrees of longitude, but because there is no such bird in that part of the globe.

If the landrail therefore migrates from the continent of Europe to Ireland, which it must otherwise do, the necessary consequence is, that many must pass over England in their way Westward to Ireland, and why do not more of these birds continue with us, but, on the contrary, immediately proceed across the St. George's channel?

Whence should it arise also, if they pass over this island periodically in the spring and autumn, that they are never observed in such passage, as I have already stated their rate in flying to be excessively slow; to which I may add, that I never saw them rise to the height of twenty yards from the ground, nor indeed exceed the pitch of a quail.

I have
I have now submitted the best answers that have occurred, not only to the general arguments for the migration of birds across oceans, but also to the particular facts, which are relied upon as actual proofs of such a regular and periodical passage.

Though I may be possibly mistaken in many of the conjectures I have made, yet I think I cannot be confuted but by new facts, and to such fresh evidence, properly authenticated, I shall most readily give up every point, which I have from present conviction been contending for.

I may then perhaps also flatter myself, that the having expressed my doubts with regard to the proofs hitherto relied upon, in support of migration, may have contributed to such new, and more accurate observations.

It is to be wished, however, that these more convincing and decisive facts may be received from islanders (the more distant from any land the better*) and not from the inhabitants of a continent; as it does not seem to be a fair inference, because certain birds leave certain spots at particular times, that they therefore migrate across a wide extent of sea.

For example, storks disappear in Holland during the winter, and they have not a very wide tract of sea between them and England; yet this bird never frequents our coasts.

* I would particularly propose the islands of Madera and St. Helena; to these, I would also add the island of Ascension (had it any inhabitants), as likewise Juan Fernandez, for the Pacifico ocean.
The stork, however, may be truely considered as a bird of passage, by the inhabitants of those parts of Europe (wherever situated) to which it may be supposed to resort during the winter, and where it is not seen during the summer.

I am, dear Sir,

Your most faithful,

humble servant,

Daines Barrington.
P. S.

SINCE I sent to you my very long letter on the migration of birds, I have had an opportunity of examining the "Planches Enluminées," which are said to be published under M. de Buffon's inspection, and which seem to afford a demonstration of M. Adanson's inaccuracy in supposing either the roller, or swallows, which he caught in his ship, near the coast of Senegal, to be the same with those of Europe.

In the 8th of these plates, there is a coloured figure of a bird, called le rollier d'Angola, which agrees exactly with M. Adanson's description*; but he trusted too much to his memory, when he pronounced it to be the same with the Garrulus Argentoratensis of Willughby, and therefore supposed it to be on its passage to Europe.

This bird hath, indeed, in many respects, a very strong resemblance to the common roller of Europe, which is represented also in the Planches Enluminées, plate 486; but it differs most materially in the length of the two exterior feathers of the tail, as well as in the colour of the neck, which in the African roller is of a most bright green, and in the European of rather a dull blue.

In the 310th plate, there is likewise a coloured representation of the "Hirondelle a ventre roux du Senegal," which specimen was possibly furnished by Mons. Adanson himself.

* Voyage au Senegal, p. 15. There is also another African bird, represented in the "Planches Enluminées," which might very easily, on a hasty inspection, be mistaken for the Garrulus Argentoratensis, viz. the Guepier a longue queue du Senegal. Pl. Enl. p. 34.

The roller of Angola is also engraved by Brisson, T. ii. pl. 7.
It very much resembles the European swallow, but the tail differs, as the forks (in the Senegal specimen) taper from the top of the two exterior feathers to the bottom, at three regular divisions, whereas in the European they are nearly of the same width throughout.

The convincing proof, however, that the "Hi-\textit{rondelle a ventre roux du Senegal}" differs from our chimney swallow is, that the rump is entirely covered with a bright orange or chestnut, which in the European swallow "is of a very lovely but dark purplish blue colour *."

Having lately looked into Aristotle's \textit{Natural History}, with regard to the cuckow, I take this opportunity also of enlarging on the doubts I have thrown out, in relation to the prevailing notion of this bird's nestlings being hatched and fed by foster parents.

I find that this most general opinion takes its rise from what is said by this father of natural history, in his ninth book, and twenty-ninth chapter. Aristotle there affirms, that the cuckow does not build a nest itself, but makes use most commonly of those of the wood-pigeon, hedge-sparrow, lark, (which he adds are on the ground) as well as that of the \textit{\chiλαρις} †, which is in trees.

Now, if we take the whole of this account together, it is certainly not to be depended upon; for the wood-pigeon ‡ and hedge-sparrow do not build upon the ground, and no one ever pretended to have:

* See Willughby, p. 312.
‡ The \textit{\chiλαρις} is rendered \textit{luteola}; but, as there is no description, it is difficult to say what bird Aristotle here alludes to. Zinanni supposes it to be the greenfinch.
‡ The wood-pigeon, from its size, seems to be the only bird which is capable of hatching or feeding, the young cuckow.
found a cuckow's egg in the nest of a lark, which, indeed, is so placed.

I have before observed, that the witnesses often vary with regard to the bird in which the cuckow's egg is deposited *; and Aristotle himself, in the seventh chapter of his sixth book, confines the foster-parents to the wood-pigeon and hedge-sparrow, but chiefly the former.

If the age † of Aristotle is considered, when he began to collect the materials for his Natural History, by the encouragement of Alexander after his conquests in India ‡, it is highly improbable he should have written from his own observations. He therefore seems to have hastily put down the accounts of the persons who brought him the different specimens from most parts of the then known world.

Inaccurate, however, and contradictory as these reports often turn out, it was the best compilation which the ancients could have recourse to; and Pliny kow; yet, if it is recollected that this bird lives on seeds, it is probable that the cuckow, whose nourishment is insects, would either be soon starved, or incapable of digesting what was brought by the foster-parent. This objection is equally applicable to the * Archaeostil, if it is our greenfinch.

* Thus Linnaeus supposes it (in the Fauna Suecica) to be the white wagtail, which bird builds in the banks of rivers, or roofs of houses, (See Zinanni, p. 51,) where it is believed no young cuckow was ever found.

† He did not leave the school of Plato till the age of thirty-eight (or, as some say, forty); after which, some years passed before he became Alexander's preceptor, who was then but fourteen: nor could he have written his Natural History, probably, till twelve years after this, as Pliny states that specimens were sent to him by Alexander, from his conquests in India. Aristotle therefore must have been nearly sixty, when he began this great work, and consequently must have described from the observations of others.

‡ Pliny, L. viii. c. 16.
therefore professes only to abridge him, in which he often does not do justice to the original.

Whatever was asserted by Aristotle, is well known to have been most implicitly believed, till the last century; and I am convinced that many of the learned in Europe would, before that time, not have credited their own eyesight against what he had delivered.

There cannot be a stronger proof that the general notion about the cuckow arises from what is laid down by Aristotle, than the chapter which immediately follows, as it relates to the goatfucker, and states that this bird sucks the teats of that animal.

From this circumstance, the goatfucker hath obtained a similar name in most languages, though it is believed no one (who thinks at all about matters of this sort) continues to believe that this bird sucks the goat*, any more than the hedgehog does the cow.

I beg leave, however, to explain myself, that I give these additional reasons only for my doubting with regard to this most prevailing opinion; because I am truly sensible that many things happen in nature, which contradict all arguments from analogy, and I am persuaded, therefore, that the first person who gave an account of the flying fish, was not credited by any one, though the existence of this animal is not now to be disputed.

All that I mean to contend for is, that the instances of such extraordinary peculiarities in animals, should be proportionably well attested, in all the necessary circumstances.

I must own, for example, that nothing short of the following particulars will thoroughly satisfy me on this head.

* See Zinzani p. 95. who took great pains to detect this vulgar error.
The hedge-sparrow's nest must be found with the proper eggs in it, which should be destroyed by the cuckow, at the time she introduces her single egg.*

The nest should then be examined at a proper distance from day to day, during the hedge-sparrow's incubation, as also the motions of the foster parent attended to, particularly in feeding the young cuckow, till it is able to shift for itself.

As I have little doubt that the last mentioned circumstance will appear decisive to many, without the others which I have required, it may be proper to give my reasons, why I cannot consider it alone, as sufficient.

There is something in the cry of a nestling for food, which affects all kinds of birds, almost as much as that of an infant, for the same purpose, excites the compassion of every human hearer †.

I have taken four young ones from a hen skylark, and placed in their room five nestling nightingales, as well as five wrens, the greater part of which were reared by the foster parent.

It can hardly in this experiment be contended, that the skylark mistook them for her own nestlings, be-

* I could also wish that the following experiment was tried. When a hedge-sparrow hath laid all her eggs, a single one of any other bird, as large as a cuckow, might be introduced, after which if either the nest was deserted, or the egg too large to be hatched, it would afford a strong presumption against this prevailing opinion. I must here also take notice, that Mrs. Hunter, F. R. S. who hath diffected hen cuckows, informs me that they are not incapacitated from hatching their eggs, as hath been supposed by some ornithologists.

† I am persuaded that a cuckow is oftener an orphan, than any other nestling, because, from the curiosity which prevails with regard to this bird, the parents are eternally shot.
cause they differed greatly, not only in number and size, but in their habits, for nightingales and wrens perch, which a skylark is almost incapable of, though, by great assiduity, she at last taught herself the proper equilibre of the body.

I have likewise been witness of the following experiment: two robins hatched five young ones in a breeding cage, to which five others were added, and the old birds brought up the whole number, making no distinction between them.

The Aëdologie also mentions (which is a very sensible treatise on the nightingale *) that nestlings of all sorts may be reared in the same manner, by introducing them to a caged bird, which is supplied with the proper food.

Not only old birds, however, attend to this cry of distress from nestlings, but young ones also which are able to shift for themselves.

I have seen a chicken, not above two months old, take as much care of younger chickens, as the parent would have shewn to them which they had lost, not only by scratching to procure them food, but by covering them with her wings; and I have little doubt but that she would have done the same by young ducks.

I have likewise been witness of nestling thrushes of a later brood, being fed by a young bird which was hatched earlier, and which indeed rather overplammed the orphans intrusted to her care; if the bird however erred in judgement, she was certainly not deficient in tenderness, which I am persuaded she would have equally extended to a nestling cuckow.

* Paris, 1751, or 1771.
Received February 13, 1772.

XXII. KOSKINOEPATOSVENOTES.

O R.

The Sieve of Eratosthenes.

Being an account of his method of finding all the Prime Numbers, by the Rev. Samuel Horsley, F. R. S.

Read May 7, 1772. A Prime number is such a one, as hath no integral divisor but unity.

A number, which hath any other integral divisor, is Composite.

Two or more numbers, which have no common integral divisor, besides unity, are said to be Prime with respect to one another.

Two or more numbers, which have any common integral divisor besides unity, are said to be Composite with respect to one another.

The distinction of numbers into Prime and Composite, is so generally understood, that I suppose it is needless to enlarge upon it.

To determine, whether several numbers proposed be Prime or Composite with respect to one another, is an easy Problem. The solution of it is given by Euclid, in the three first propositions of the 7th book.
book of the Elements, and is to be found in many common treatises of Arithmetic and Algebra. But to determine, concerning any number proposed, whether it be absolutely Prime or Composite, is a Problem of much greater difficulty. It seems indeed incapable of a direct solution, by any general method; because the successive formation of the prime numbers doth not seem reducible to any general law. And for the same reason, no direct method hath hitherto been hit upon, for constructing a Table of all the prime numbers to any given limit. Eratosthenes, whose skill in every branch of the philosophy and literature of his times, rendered his name so famous among the Sages of the Alexandrian School, was the inventor of an indirect method, by which such a table might be constructed, and carried to a great length, in a short time, and with little labour. This extraordinary and useful invention is at present, I believe, little, if at all, known; being described only by two writers, who are seldom read, and by them but obscurely; by Nicomachus Gerafinus, a shallow writer of the 3d or 4th century, who seems to have been led into mathematical speculations, not so much by any genius for them, as by a fondness for the mysteries of the Pythagorean and Platonic philosophy; and by Boethius, whose treatise upon numbers is but an abridgment of the wretched performance of Nichomachus*. I flatter myself therefore, that a succinct account of it will not be unacceptable to this learned Society.

* There are more pieces than one of this Nichomachus extant. That which I refer to is intitled Εὐαλον Αριθμολογίαν.
But before I enter expressly upon the subject, I must take the liberty to animadvert upon a certain Table, which, among other pieces ascribed to Eratosthenes, is printed at the end of the beautiful edition of Aratus published at Oxford in the year 1672, and is adorned with the title of Κοσκινον Ερατοσθενος. It contains all the odd numbers from 3 to 113 inclusive, distributed in little cells, all the divisors of every Composite number being placed over it, in its proper cell, and the Prime numbers are distinguished, so far as the table goes, by having no divisors placed over them. It hath probably been copied either from a Greek comment upon the Arithmetic of Nicomachus, preserved among the manuscripts of Mr. Selden in the Bodleian Library, in which, though the manuscript is now so much decayed as to be in most places illegible, I find plain vestiges of such a table *, which might be more perfect 100 years ago, when the Oxford Aratus was published; or else, from another comment, translated from a Greek manuscript into Latin, and published in that language, by Camerarius, in which a table of the very same form occurs, extending from the number 3 to 109 inclusive. It may sufficiently screen the editor of Aratus from censure, that he had these authorities to publish this table as the Sieve of Eratosthenes; especially as they are in some measure supported by passages of Nicomachus himself. But the Sieve of Eratosthenes was quite another thing.

* This manuscript seems to have contained the text of Nicomachus with Scholia in the margin. But the table evidently belongs to the Scholia, not to the text.

Vol. LXII.
The Oxford editor hath annexed to his table, to explain the use of it, some detached passages, which he hath selected from the text of Nicomachus, and from a comment upon Nicomachus ascribed to Joannes Grammaticus. In these passages the difference between Prime and Composite numbers is explained, in many words indeed, but not with the greatest accuracy; and it is proposed to frame a kind of Table of all the odd numbers, from 3 to any given limit, in which the Composite numbers should be distinguished by certain marks *.

The Primes would consequently be characterised, as far as the table should be carried, by being unmarked. But, upon what principles, or by what rule, such a table is to be constructed, is not at all explained. It is obvious that, in order to mark the Composite numbers, it is necessary to know which are such. And, without some rule to distinguish which numbers are Prime, and which are Composite, independent of any table in which they shall be distinguished by marks, it is impossible to judge, whether the table be true, as far as it goes, or to extend it, if requisite, to a further limit. Now it was the Rule by which the Prime numbers and the Composite might be distinguished, not a Table constructed we know not how, that was the invention of Eratosthenes, to which from its use, as well as from the nature of the operation, which

* Nicomachus and Joannes Grammaticus propose that these marks should be such, as should not only distinguish the composite numbers, but likewise serve to express all the divisors of every such number. It will be shewn, in a proper place, that this was no part of the original contrivance of the Sieve.
proceeds (as will be shewn) by a gradual extermination of the composite numbers from the arithmetical series 3, 5, 7, 9, 11, &c. infinitely continued, its author gave the name of the Sieve. I have thought it necessary to premise these remarks, to remove a prejudice, which I apprehend many may have conceived, as this beautiful and valuable edition of Aratus is in every one's hands, that this ill-contrived table, the useless work of some monk in a barbarous age, was the whole of the invention of the great Eratosthenes, and in justice to myself, that I might not be suspected of attempting to reap another's harvest.

I now proceed, to give a true account of this excellent invention; which, for its usefulness, as well as for its simplicity, I cannot but consider as one of the most precious remnants of Ancient Arithmetic. I shall venture to represent it according to my own ideas, not obliging myself to conform, in every particular, to the account of Nicomachus, which I am persuaded is in many circumstances erroneous. In stating the principles upon which the Operation of the Sieve was founded, he hath added observations upon certain relations of the odd numbers to one another, which are certainly his own, because they are of no importance in themselves, and are quite foreign to the purpose. Every thing of this kind I omit; and having stated what I take to have been the genuine Theory of Eratosthenes's method, cleared from the adulterations of Nicomachus, I deduce from it an operation of great simplicity, which solves the Problem in question with wonderful ease, and which,
because it is the most simple that the theory seems to afford, I scruple not to adopt as the original Operation of the Sieve, though nothing like it is to be found in Nicomachus; though, on the contrary, Nichomachus, and all his Commentators, would suggest an operation very different from it, and far more laborious. For the satisfaction of the curious and the learned, I have annexed a copy of so much of Nicomachus's treatise, as relates to this subject, with such corrections of the text, as it stands in the edition of Wiclelius, printed at Paris anno 1538, as the sense hath suggested to me, or I have thought proper to adopt, upon the authority of a manuscript preserved among those of Archbishop Laud, in the Bodleian Library; which, in this part, I have carefully collated. By comparing this with the account which I subjoin, every one will be able to judge how far I have done justice to the invention I have undertaken to explain.

PROBLEM.

To find all the Prime Numbers:

The number 2 is a Prime number; but, except 2, no even number is Prime, because every even number, except 2, is divisible by 2, and is therefore Composite. Hence it follows, that all the Prime numbers, except the number 2, are included in the series of the odd numbers, in their natural order, infinitely extended; that is, in the series

3. 5. 7. 9. 11. 13. 15. 17. 19. 21. 23. 25. 27. 29. 31. 33. 35. 37. 39. 41. 43. 45. 47. 49. 51. &c.

Every
Every number which is not prime, is a multiple of some prime number, as Euclid hath demonstrated (Element. 7. prop. 33.) Therefore the foregoing series consists of the prime numbers, and of multiples of the primes. And the multiples, of every number in the series, follow at regular distances; by attending to which circumstance, all the multiples, that is, all the composite numbers, may be easily distinguished and exterminated.

I say, the multiples of all numbers, in the foregoing series, follow at regular distances.

For between 3 and its first multiple in the series (9) two numbers intervene, which are not multiples of 3. Between 9 and the next multiple of 3 (15) two numbers likewise intervene, which are not multiples of 3. Again between 15 and the next multiple of 3 (21) two numbers intervene, which are not multiples of 3; and so on. Again, between 5 and its first multiple (15) four numbers intervene, which are not multiples of 5. And between 15 and the next multiple of 5 (25) four numbers intervene which are not multiples of 5; and so on. In like manner, between every pair of the multiples of 7, as they stand in their natural order in the series, 6 numbers intervene which are not multiples of 7. Universally, between every two multiples of any number n, as they stand in their natural order in the series, $n-1$ numbers intervene, which are not multiples of n.

Hence may be derived an operation for exterminating the composite numbers, which I take to have been the operation of the sieve, and is as follows.
Count all the terms of the series following the number 3, by threes, and expunge every third number. Thus all the multiples of 3 are expunged. The first uncancellation number that appears in the series, after 3, is 5. Expunge the square of 5. Count all the terms of the series, which follow the square of 5, by fives, and expunge every fifth number, if not expunged before. Thus all the multiples of five are expunged, which were not at first expunged, among the multiples of 3. The next uncancellation number to 5 is 7. Expunge the square of 7. Count all the terms of the series following the square of 7, by sevens, and expunge every seventh number, if not expunged before. Thus all the multiples of 7 are expunged, which were not before expunged among the multiples of 3 or 5. The next uncancellation number which is now to be found in the series, after 7, is 11. Expunge the square of 11. Count all the terms of the series, which follow the square of 11.
of \(\text{ii}\), by elevens, and expunge every eleventh number, if not expunged before. Thus all the multiples of \(\text{II}\) are expunged, which were not before expunged among the multiples of 3, 5, and 7. Continue these expunctions, till the first uncancelled number that appears, next to that whose multiples have been last expunged, is such, that its square is greater than the last and greatest number to which the series is extended. The numbers which then remain uncancelled are all the Prime numbers, except the number 2, which occur in the natural progression of number from \(\text{I}\) to the limit of the series. By the limit of the series I mean the last and greatest number to which it is thought proper to extend it.

Thus the prime numbers are found to any given limit.

Nicomachus proposes to make such marks over the Composite numbers, as should shew all the divisors of each. From this circumstance, and from the repeated intimations both of Nicomachus, and his commentator Joannes Grammaticus *, one would be led to imagine, that the Sieve of Eratosthenes was something more than its name imports, a method of sifting out the Prime numbers from the indiscriminate mass of all numbers Prime and Composite, and that, in some way or other, it exhibited all the divisors of every Composite number, and likewise shewed whether two or

* The Comment of Joannes Grammaticus is extant in manuscript in the Savilian Library at Oxford, to which I have frequent access, by the favour of the Reverend and Learned Mr. Hornsby, the Savilian Professor of Astronomy.
more Composite numbers were Prime or Composite with respect to each other. I have many reasons to think, that this was not the case. I shall as briefly as possible point out some of the chief, for the matter is not so important, as to justify my troubling the Society with a minute detail of them. First then, in the natural series of odd numbers, 3. 5. 7. &c. every number is a divisor of some succeeding number. Therefore if we are to have marks for all the different divisors of every Composite number, we must have a different mark for every odd number. Therefore we must have as many marks, or systems of marks, as numbers; and I do not see, that it would be possible, to find any more compendious marks, than the common numeral characters. This being the case, it would be impracticable to carry such a table as Nicomachus proposes, and his commentators have sketched, to a sufficient length to be of use, on account of the multiplicity of the divisors of many numbers, and the confusion which this circumstance would create*. It is hardly to be supposed, that Eratosthenes could overlook this obvious difficulty, though Nicomachus hath not attended to it. Eratosthenes therefore could not intend the construction of such a table.

In the next place, such a table not being had, Eratosthenes could not but perceive, that, the determining whether two or more numbers be Prime or Composite with respect to one another, is in all cases to be done more easily, by the direct method given by Euclid, than by

* The number 3465 hath no less than 22 different divisors.
the method of the Sieve. And he could not mean, to apply this method to a problem, to which another was better adapted.

Lastly, Eratosthenes could not mean, that the method of the Sieve should be applied to the finding of all the possible divisors of any Composite number proposed, because he could not be acquainted with a more ready way of doing this, founded upon two obvious Theorems, which could not be unknown to him.

The Theorems I mean are these.

1st. If two Prime numbers multiply each other, the number produced hath no divisors but the two prime factors.

2d. If a Prime number multiply a Composite number, and likewise multiply all the divisors of that composite severally, the numbers produced by the multiplications of these divisors will be divisors of the number produced by the first multiplication: And the number produced by the first multiplication will have no divisors, but the two factors, the divisors of the Composite factor, and the numbers made by the multiplication of these divisors by the Prime factor severally.

The method of finding all the divisors of any Composite number, delivered by Sir Isaac Newton in the Arithmetica Universalis, and by Mr. Maclaurin in his Treatise of Algebra, may be deduced from these propositions, as every mathematician will easily perceive. This method requires indeed that the least prime divisor should be previously found; and, if the least prime divisor should happen to be a large number, as it is not assignable by any general method, the
investigation of it by repeated tentations may be very tedious. A table therefore of the odd numbers *, in which the Composite numbers should each have its least Prime divisor written over it, would be very useful. But Nichomachus's project of framing a table in which each Composite number should have all its divisors written over it, is ridiculous and absurd, on account of the insuperable difficulties which would attend the execution of it.

Feb. 7, 1772.

S. Horsley.

* A table of the odd numbers would be sufficient: for the number 2 is the least prime divisor of every even number; and it is easy, even in the largest numbers, to try whether they are divisible by 2. In our method of notation, this may always be known, by observing the last figure in the expression of the number proposed.
EXCERPTA QUÆDAM

Arithmetica Nicomachi
Ad Cribrum Eratosthenis pertinentia.

'H ὅ τέτων ὑμείς (a), ὅποιος ἐρασισθένεις, καλείται Κοστίνον ἐπειδὴ ἀναστεφανύμενος τῶν περιοστῶν λαθέων χρ. ἀδι-κρίτης, εἰς αὐτῶν [τῶν διαφέροντα ἀλλήλων ἑαυτῷ] (b) ταύτῃ τῇ τῆς ἡμέσεως (c) μεθόδῳ διαχωρίζομεν, ἦς δι’ ὑπογινή ἴν ἀποκάλεσθαι τινός. ἦν δὲ μεν τῶν πρώτων ὑπ’ αὐθαυτής, χωρὶς ὃ τῆς μέσης εὐρισκόμεν. 'Εσι ὃ τρόπῳ τῇ Κοστίνῳ τοῖστοι. Ἐκθέτωμαι τῇ τῶν αὐτῶν παῖδας ἐφεξῆς περιοστῆς, ὡς δυνατόν μάλιστα ἐπὶ μὴν μήκος τίχων, οὐκ ἐπέβαλλο (d) ἀπὸ τῇ πρώτῃ, ἐπισκοπῶν τίνας οἷς τῷ ζῇ μεθέεον ἐκαίτη. (e) εὐρίσκω δυνατόν ὅπως τὸν πρῶτον, ἥτοι τοῦ τῆς δύο μέ-σης διαλείποντος (d) μεθέειν, μέχρις ὡς προχαρεῖν ἐβέλωσο (e). ἔχ. εἰς ἐτυχε ὃ, ἣ εἰκοῦ, μέθρην οollapse τὸν μὴν πρῶτος αὐτῶν κείμον, τῷ ἐστὶ τῶν ἁπ. ἐκαίτη τῆς δύο μέσης διαλεί-}

(a) Mallem εὑρέσει, etli, ne quid diffimulem, lectioni receptæ adspipulatur Boethii interpretatio.
(b) Voces uncis inclusas conjecturâ supplevi; quin et sequenti-um ordinem paululum immutavi, pro τῇ τῆς ἡμέσεως μεθόδῳ ταύτῃ, scribendo ταύτῃ τῷ Χ. τ. λ.
(d) Cod. MS. habet διαλείποντα. Wechelius παραλείποντα. (e) Ex Cod. MS. pro ἐβέλωσον.

X x 2

Ποιήσα
(f) Locum in Editione Wechelii corruptum, in Cod. MS. mutiium & turbatum, conjecturā, prout potui, sanatum dedi.

Editio Wechelii habet eōn tōs dūō mēōns ὑπερβαλλόνα. Codex MS. tōn d.i.e. ταξις τῶν τριῶν.

(g) Conjecturā, pro τὴραιδί.

(h) Lītera numeralem γ', conjecturā posui pro voce τρίς.

(i) Restituī ex Cod. MS pro ὅτι, quae est Wechelii lectio.

(k) Particulam xai omisi.

(l) Wechelium sequor. Cod. MS. habet λαγς, fensu, ut videtur, nullo.

(m) Ex Cod. MS. pro ἀπαρεμπάθειον.

* Conjecturā pro μέλον.
καὶ εἰς τὸν ὑπὸ διωδότας ἐπὶ ἀπερίου εὐτακτον τῶν (n) ἀρίθμων προσοπήν, ἡ καὶ ἡ τῆς τῆς χάρας διπλασίας καθ’ ἦν ὁ μείζων τέταρτος τοῦ πολλὰς, καὶ τῆς τῶν ὑπὸ τριάδος μέτρων ἐνταξεῖν ἐπὶ ἀπερίου (ο) προχώρησιν (ρ). Ἐπεὶ ἐν σημείον τούτω ἐπιτίθεται τῆς καθαρμος, εὐρύτερος τῆς μείξισιν ἀλλὰ τοῦ μείζουν, ἔτει ἀμα κλαίον τῷ εὐτάον μείζων, ὡστε μείζων, ἐτέι ἀμα κλαίον τῷ εὐτάον τῷ κτισμάτως υποτάξιον ταυτά εὐτάον, ἐτέι τῶν μὲν πεντάλαθες διαφάνους τῇ μείζων ὧφ’ ἐντινοσέν ταις ἔτει ὧφ’ ἐνδὲ μέν ἀλλὰ μείζων τεις ἔτει ὧφ’ ὧτο δύο, ἑτέι πλείονων. Οἱ μὲν ἐν μεθαμάσῃς (δ) μείζων, ἀλλὰ διαφάνους τῇ πετρού ἐτεις ἀπομείναι, ὡστε ὧτο χονοίν διαφάνους, ὧτε ὧφ’ ἐνδὲ μέν ἀλλὰ μείζων, καὶ ἐτεί τὴν ἑαυτὴν (γ) ποσότητα, ἐν δὲνον νόμον ἐπεράνυμον ἐξέστι πρὸς τῷ παρωνίῳ τοῦ ἐτεῖς, ἐτεὶ ὧφ’ ἐνδὲ μέν (δ), ἑτέρω δὲ ποσότητη, ὧτε τῇ ἑαυτῆ, ἐκ ὧτο δύο ὧτον μείζων πλείονα ἐξέστι τῷ ἐπεράνυμῳ μεῖζῃ πρὸς τῷ παρωνίῳ τῶν ἑτεῖς ἐκ ὧτον)

(n) Conjectura pro tnu.
(o) Voces ip' ἀπερίου ex Cod. MS. restituit.
(p) Nempe ferieis numerorum impariorum 3, 5, 7, 9, &c. infinitae protenfa, cum numeros impares univeros contineat, impares cujusvis multiplices omnes impares necessario complectitur. Esto igitur n numerus quilibet impar. In serie 3, 5, 7, &c. infinitae protenfa, habes numeros omnes n x 3, n x 5, n x 7, n x 9, &c. Et cum seriei ea Lex sit & Conditio, ut naturali ordine numeri impares sequantur, & minor omnis numerus majorem praecedat, fieri nequit, quin multiplices numeri n cum inter se ordinem fervent, ut minor quique majorem praecedat. Primus igitur erit n x 3, secundus n x 5, tertius n x 7, &c. universum n x m cum habiturum est, inter multiplices, locum, quem numerus m in serie.
(q) Ex Cod. MS. vice ἀπερίου, quæ Wechelii lectio est.
(r) Conjecturā pro ἑαυτῶν.
(s) Particulam μὶ' ex Cod. MS. restituit.
342

Deuterou α συνθέσιν. Tò de tríton méρος, to koinon 'ám-
φορέων, ὁ καθ' εαυτὸ μὴ δεύτερον α συνθέσιν, ἀλλ' ἐν τῷ
πρῶτον α συνθέσιν, ἐσον' ἀποτελέσματε ἠκριβεὶ, καὶ καὶ
τὴν ἑαυτῇ ποσότητα πρῶτε ἀ συνθέστε μελέταν. Tivòs,
εἰτε [τέτο τῷ τρόπῳ] (t) ἡμὸν, συνήκονον πρὸς
ἀλλ' ὑστατέως τὴν ἱστομ 'ἐχοῦνα. ἀλλ' ἔτερον ἑφ'
ἐκ τὰ γ' (u) κατὰ τὴν ἑαυτῇ ποσότητα μελέταν. Tivòs
γαρ' εἰ συνήκονον πρὸς τ' ἔτερον ἑφ' ἐκ τούτοις (x) ἐκ τού
τ' ἕτερον ἑαυτῇ ποσότητα μελέταν. Pειθόμενος γαρ'
koinon métrōn τέτοιον ἐκ ἑσσώ, εἰ μὴ μονη Ἡ-
Μονάς.

(t) Voces τάτο τῷ τρόπῳ conjecturā fupplevi.
(u) Literam numeralem γ' pro voce τρίτα quae apud Wechelium
legitur, ex Cod. MS restituit.
(x) Voces γαρ καὶ ἐτῇ ex Cod. MS, restituit.
Ex Arithmetica Boethii.

Lib. I. c. xvii.

GENERATIO autem ipsorum atque ortus hujusmodi investigatione colligitur, quam scilicet Eratosthenes Cribrum nominabat; quod cunctis impairibus in medio collocatis, per eam, quam tradituri fumus, artem, qui primi, quive secundi, quique tertii generis videantur esse distinguitur. Disponantur enim a ternario numero cuncti, in ordinem impares, in quantam libet longissimam porrectionem 3. 5. 7. 9. 11. 13. 15. 17. 19. 21. 23. 25. 27. 29. 31. 33. 35. 37. 39. 41. 43. 45. 47. 49. Higatur ita dispositis, considerandum, primus numerus quem eorum, qui sunt in ordine posit, primum metiri potest: sed, duobus praeteritis, illum, qui post eos est positus, mox metitur: et, si post eundem ipsum quem mensus est, alii duo transmissi sunt, illum, qui post duos est, rursus metitur: et, eodem modo si duos quis reliquerit, post eos qui est, a primo numero metiendus est; eodemque modo, reliquis semper duobus, a primo, in infinitum pergentes metiuntur. Sed id non vulgo necque confus. Nam primus numerus illum, qui est post duos secundum se locatos, per quam quantitatem metitur: ternarius enim numerus ter a 9 metitur. Si autem post novenarium duos reliquero, qui mihi post illos incurre-

\[\text{a Conjectura pro tertio.} \]
rit, a primo metiendus est, per secundi imparis quantitatem; id est, per quinarium: nam si post 9 duos relinquant, id est 11 & 13, ternarius numerus 15 metietur, per secundi numeri quantitatem, id est, per quinarii; quoniam numerus ternarius 15 quinques metitur. Rursus, si a quindenario inchoatis duos intermisero, qui posterior positus est, ejus primus numerus mensura est, per tertii imparsi pluralitatem: nam si post 15 intermisero 17 & 19, incurrat 21, quem ternarius numerus secundum septenarium metitur; 21 enim numeri ternarius septima pars est: atque hoc in infinitum faciens, reperio primum numerum, si binos intermisero, omnes sequentes post se metiri, secundum quantitatem positorum ordine imparium numerorum. Si vero quinarius numerus, qui in secundo loco est constitutus, velit quis, cujus prima ac deinceps sit mensura, invenire, tranmisso quatuor imparibus, quintus ei quem metiri posset, occurrit. Intermittentur enim quatuor impares, id est, 7 & 9, & 11 & 13; post hos est quintus decimus quem quinarii metitur, secundum primi scilicet quantitatem, id est, ternarii; quinque enim 15 tertiam metiuntur: ac deinceps, si quatuor intermitterat, eam qui post illos locatus est, secundus, id est, quinarius, sui quantitate metitur: nam post quindecim intermissis 17 & 19, & 21 & 23, post eos 25 reperio, quos quinarius scilicet numerus sue pluralitate metitur; quinques enim quinario multiplicato, 25 succedereunt: si vero post hunc quilibet quatuor intermitterat, eadem ordinis servata
constantiae, qui eos sequitur, secundum tertii, id est, septenarii numeri summan, a quinario metitur: atque haec est infinita processio. Si vero tertius numerus quem metiri posuit exquiritur, sex in medio relinquentur; & quem septimum ordem monstraverit, hic per primi numeri, id est, ternarii quantitatem metiendus est: et post illum, sex aliis interpositis, quem post eos numeri series dabat, per quinaria, id est, per secundum, tertii eum mensura percurrit: si vero alios rursus sex in medio quis relinquat, ille, qui sequitur, per septenarium ab eodem septenario metiendus est; id est, per tertii quantitatem; atque hic usque in extremum ratus ordo progradientur. Suscipient ergo metiendi vicissitudinem, quemadmodum sunt in ordine naturaliter impares constituti: metiuntur autem, si per pares numeros, a binario inchoantes, positos inter se impares, ratam intermissione, transiliant; ut primus duas, secundus quatuor, tertius sex, quartus octo, quintus decem: vel si locos suos conduplicent, & secundum duplicationem terminos intermittant; ut ternarius, qui primus est numerus, & Unus, omnis enim primus Unus est, bis locum suum multiplicet, faciatque bis unum; qui cum duo sint, primus duos medios transeat. Rursus secundus, id est, quinarius, si locum suum multiplicet, 4 explicabitur: hic quoque quattuor e intermittat. Item si septenarius, qui tertius est, locum suum duplicet, sex creabit; bis enim 3 senarium jungunt: hic ergo in ordine fex relinquat. Quartus quoque, si locum

a Conjecturā restitui pro 12.
b Conjecturā pro 4.
c Conjecturā pro ordinem.
Vol. LXII. Y y suum
IIium duplicet, & succrescent; ille quoque octo
transfiliat : atque hoc quidem in cæteris perspicie-
dum. Modum autem mentionis, secundum or-
dinem collocatorum, ipsa series dabit. Nam pri-
mus primum quem numerat, secundum primum
numerat; id est, secundum se; & secundum pri-
mus quem numerat, per secundum numerat, &
tertium per tertium, & quartum item per quartum.
Cum autem secundus mentionem succiperit, pri-
mus quem numerat secundum primum metitur;
secundum vero quem numerat per se, id est, per
secundum; & tertium per tertium: & in cæteris câ-
dem similitudine mensura constabit. Illos i ergo
si respicias, vel qui alios mensí sunt, vel qui ipsí
ab alis metiuntur, invenies omnium simul com-
munem mensuram esse non posse, neque ut omnes
quemquam alium simul numerent; quosdam au-
tem ex his ab alio posse metiri, ita ut ab uno tan-
tum numerentur; alios vero, ut etiam a pluribus;
quosdem autem, ut praeter Unitatem eorum
nulla mensura fit. Qui ergo nullam mensuram
praeter Unitatem recipiunt; hos Primos & Incom-

1 Conjecturâ pro 8.
2 Pro numerat mallem in utroque loco, metitur, ut aliud fit
numerare, aliud metiri, & senius fit, "That which the first
"number [of the Series] counts the first [of its multiples], it
"measures by the first [of the Series], i.e. by itself. That
"which it counts the second [of its multiples], it measures by
"the second [number in the Series]," Sic enim infra legimus
de Numero ordine secundo, "primum quem numerat secundum
"primum metitur."
3 Conjecturâ, pro mansinem.
4 Conjectura, pro alios.
5 Ang. "But as to be counted in among the multiples of
"one number only."
positos judicamus; qui vero alium menfuran praeter Unitatem, vel alienigenae partis vocabulum fortiantur, eos pronunciemus Secundos atque Compoitos. Tertium vero illud genus, per se Secundi & Compositi, Primi vero & Imcompositi ad alterutrum comparati, hac inquisitor ratione reperiet. Si enim quolibet primos numeros, secundum fumam in se metipso multiplicies quantitatem, qui procreantur, ad alterutrum comparati, nulla menfurâ communione junguntur: 3 m enim & 5, si multiplicies, 3 ter n 9 faciunt, & quinquies 5 redundat 25. His igitur nulla est cognatio communis mensurae. Rursus 5 & 7 quos procreant, si comparant, hi quoque incommensurabiles erant: quinquies enim 5, ut dixitum est, 25, septies 7 faciunt 49; quorum mensura nulla communis est, nisi forte omnium horum procreatrix & mater Unitas. 1

1 Conjetura pro illos.

m Conjeturâ, pro tres. n Conjeturâ pro tres tertio.

° Sed cave credas, Leâtor, numeros inter se primos nullos dari praeter Primorum Quadratos.
XXIII. A Letter from Mr. Christopher Gullet to Matthew Maty, M. D. Sec. R. S. on the Effects of Elder, in preserving Growing Plants from Insects and Flies.

Tavistock (Devon) August 11, 1771,

SIR,

Read May 14, 1771, I SHOULD not presume to trouble you as a member of the Royal Society with the following letter, did not the subject seem to promise to be of great public utility. It relates to the effects of Elder,

Sambucus frutu in um'ella nigro.

1st. In preserving cabbage plants from being eaten or damaged by caterpillers.

2d. In preventing blights, and their effects on fruit and other trees.

3d. In the preservation of crops of wheat from the yellows, and other destructive insects.

4th. Also in saving crops of turnips from the fly, &c. &c.

1st, I was led to my first experiments, by considering how disagreeable and offensive to our olfactory nerves the effluvia emitted by a brush of green elder.
elder leaves are, and from thence, reasoning how much more so they must be to those of a butterfly, whom I considered as being as much superior to us in delicacy as inferior in size. Accordingly I took some twigs of young elder, and with them whipt the cabbage plants well, but so gently as not to hurt them, just as the butterflies first appeared; from which time, for these two summers, though the butterflies would hover and flutter round them like gnomes or sylphs, yet I could never see one pitch. nor was there I believe a single caterpillar blown, after the plants were so whipt; though an adjoining bed was infested as usual.

2d. Reflecting on the effects abovementioned, and considering blights as chiefly and generally occasioned by small flies, and minute insects, whose organs are proportionably finer than the former, I whipt the limbs of a wall plumb tree, as high as I could reach; the leaves of which were preserved green, flourishing, and unhurt, while those not six inches higher, and from thence upwards, were blighted, shrivelled up, and full of worms. Some of these last I afterwards restored by whipping with, and tying up, elder among them. It must be noted, that, this tree was in full blossom at the time of whipping, which was much too late, as it should have been done once or twice before the blossom appeared. But I conclude from the whole, that if an infusion of elder was made in a tub of water, so that the water might be strongly impregnated therewith, and then sprinkled over the tree, by a hand engine, once every week or fortnight, it would effectually answer.
answer every purpose that could be wished, without any possible risk of hurting the blossoms or fruit.

3d. What the farmers call the yellows in wheat, and which they consider as a kind of mildew, is in fact, as I have no doubt but you well know, occasioned by a small yellow fly with blue wings, about the size of a gnat. This blows in the ear of the corn, and produces a worm, almost invisible to the naked eye; but being seen through a pocket microscope, it appears a large yellow maggot of the colour and gloss of amber, and is so prolific that I last week distinctly counted 41 living yellow maggots or insects, in the husk of one single grain of wheat, a number sufficient to eat up and destroy the corn in a whole ear. I intended to have tried the following experiment sooner; but the dry hot weather bringing on the corn faster than was expected, it was got and getting into fine blossoms ere I had an opportunity of ordering as I did; but however the next morning at daybreak, two servants took two bushes of elder, and went one on each side of the ridge from end to end, and so back again, drawing the elder over the ears of corn of such fields as were not too far advanced in blossoming. I conceived, that the disagreeable effluvia of the elder would effectually prevent those flies from pitching their tents in so noxious a situation; nor was I disappointed, for I am firmly persuaded that no flies pitched or blew on the corn after it had been so struck. But I had the mortification of observing the flies (the evening before it was struck) already on the corn (six, seven or eight, on a single ear). So that what damage hath accrued, was done before
before the operation took place; for, on examining it last week, I found the corn which had been struck pretty free of the yellows, very much more so than what was not struck. I have, therefore, no doubt but that, had the operation been performed sooner, the corn would have remained totally clear and untouched. If so, simple as the process is, I flatter myself, it bids fair to preserve fine crops of corn from destruction, as the small insects are the crops greatest enemy. One of those yellow flies laid at least eight or ten eggs of an oblong shape on my thumb, only while carrying by the wing across three or four ridges, as appeared on viewing it with a pocket microscope.

4th. Crops of turnips are frequently destroyed, when young, by being bitten by some insects, either flies or fleas; this I flatter myself may be effectually prevented, by having an elder bush spread so as to cover about the breadth of a ridge, and drawn once forward and backward by a man over the young turnips. I am confirmed in this idea, by having struck an elder bush over a bed of young callyflower plants, which had begun to be bitten, and would otherwise have been destroyed by those insects; but after that operation it remained untouched.

In support of my opinion, I beg leave to mention the following fact from very credible information, that about eight or nine years ago this county was so infested with cock chaffers or oakwebs, that in many parishes they ate every green thing, but elder; nor left a green leaf untouched besides elder bushes, which alone remained green and unhurt, amid the general devastation of so voracious a multitude. On reflecting
reflecting on these several circumstances, a thought suggested itself to me, whether an elder, now esteemed noxious and offensive, may not be one day seen planted with, and entwisting its branches among, fruit trees, in order to preserve the fruit from destruction of insects: and whether the same means which produced these several effects, may not be extended to a great variety of other cases, in the preservation of the vegetable kingdom.

The dwarf elder (ebulus) I apprehend emits more offensive effluvia than common elder, therefore must be preferable to it in the several experiments.

On mentioning lately to Sir Richard W. Bampfylde, one of the representatives of this county, my observations on the corn crops, and the effects of the elder, &c. he persuaded me to publish them, which in some measure determined my taking this step, of transmitting them to a Society incorporated for promoting the knowledge of natural things, and useful experiments, in which they have so happily and amply succeeded, to the unspeakable advantage and improvement both of the old and new world. I have the honour to subscribe myself,

SIR,

Your most obedient,

humble Servant,

Chr. Gullett.
XXIV. A Letter from John Call, Esq; to Nevil Maskelyne, F. R. S. Astronomer Royal, containing a Sketch of the Signs of the Zodiac, found in a Pagoda, near Cape Comorin in India.

S I R,

Read May 14, 1772. As a member of the Royal Society, and one whose study is particularly directed to the motions of the heavenly bodies, I think you the most proper person to whom I can send the inclosed sketch [Tab. X.], which I drew with a pencil, as I lay on my back resting myself during the heat of the day, in a journey from Madurah to Twinwelly, near Cape Comorin. And I send it to you rather in the original, as I then sketched it off, than in any more complete form, lest it should thereby have more the appearance of composition, and leave not so strong an impression of antiquity, as it made on me when I discovered it.

After such a discovery, I searched in my travels many other pagodas, or choultries, for similar carvings; but, to the best of my remembrance, never found...
but one more equally complete, which was on the ceiling of a temple, in the middle of a tank before the pagoda of Teppecolum, near Mindurah, of which tank and temple Mr. Ward, painter in Broad-street, near Carnaby-market, hath a drawing; but I have often met with the several parts in detached pieces.

From the correspondence of the signs of the zodiac which we at present use, and which we had, I believe, from the Arabians or Egyptians, I am apt to think that they originally came from India, and were in use among the Bramins, when Zoroafter and Pythagoras travelled thither, and consequently adopted and used by those travellers: and as these philosophers are still spoken of in India, under the names of Zerdhuril and Pyttagore, I should also hazard another idea, that the worship of the cow, which still prevails in India, was transplanted from thence to Egypt. But this is only conjecture; and it may with almost equal probability be said, that Zoroafter or Pythagoras carried that worship to India.

However, I think there is an argument still in favour of India for its antiquity, in point of civilization and cultivation of the arts and sciences; for it is hardly in dispute that all these improvements came from the east to the west; and, if we may be allowed to draw any conclusions from the immense buildings now existing, and from the little of the inscriptions, which can be interpreted on several of the choultrys and pagodas, I think it may safely be pronounced, that no part of the world has more marks of antiquity for arts, sciences, and civilization,
tion, than the peninsula of India, from the Ganges to Cape Comorin; nor is there in the world a finer climate, or face of the country, nor a spot better inhabited, or filled with towns, temples, and villages, than this space is throughout, if China and parts of Europe are excepted.

I think the carvings on some of the pagodas and choultrys, as well as the grandeur of the work, exceeds any thing executed now-a-days, not only for the delicacy of the chiffer, but the expence of construction, considering, in many instances, to what distances the component parts were carried, and to what heights raised. If Mr. Kittle the painter, now in India, should have time and opportunity, after he hath made his fortune by portrait drawing, it would be a great addition to his reputation, and well worth his pains, to investigate the nature of the Indian architecture and carving, by painting some of the most curious buildings, or parts of pagodas. The great obstacle to ascertaining dates, or historical events, is the loss of the Sans-Skirrit language, and the confinement of it to the priesthood. I should have taken some pains to have collected many things; but the number of revolutions and occupations which happened always prevented me.

I also commit to your inspection the * manuscripts of Mr. Robins, which he gave me at his death;

* These I communicated to the Royal Society, together with this letter; but being examined by myself, Mr. Raper, Mr. Cavendish, and Mr. Horfley, at the desire of the Society, they were not found to contain any thing material more than has been already printed; excepting a treatise on military discipline: which, if it should be thought of use, may be inserted in the next edition of his works. N. M.
I believe most of them have been printed, but if there are any which have not, or that can amuse you or instruct others, you are welcome to use them as you please: I only wish they may contain any thing useful. While he lived, I pursued those studies; but, soon after his death, new scenes arose, and engaged me more in practical service, than allowed me time for theory, or experiments. I am, however, a constant well-wisher to the progress of arts and sciences, as well as study; and very much,

S I R,

Your obedient,

humble servant,

Jn° Callv.

XXV. An
XXV. An Account of the Flowing of the
Tides in the South Sea; as observed on
board His Majesty's Bark the Endeavour,
by Lieut. J. Cook, Commander, in a
Letter to Nevil Maskelyne, Astronomer-
Royal, and F. R. S.

Mile-end, February 5, 1772.

Reverend Sir,

Read May 21, 1772. I Here send you the few observations I made on the tides in the South Sea, to which I have only to add, that, from many circumstances and observations, I am fully convinced the flood comes from the southward, or rather from the S. E. I am,

S. I R.

Your most obedient,

humble servant,

J. Cook.
<table>
<thead>
<tr>
<th>Names of places where observed</th>
<th>Lat. South</th>
<th>Long. Weft.</th>
<th>New and full Moon.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>High water.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rise & fall.</td>
</tr>
<tr>
<td>Success Bay in Strait le Maire</td>
<td>54 45</td>
<td>66 4</td>
<td>4 30</td>
</tr>
<tr>
<td>Lagoon Island</td>
<td>58 47</td>
<td>139 28</td>
<td>0 30</td>
</tr>
<tr>
<td>Matavai Bay, Otaheita</td>
<td>17 29</td>
<td>149 30</td>
<td>0 30</td>
</tr>
<tr>
<td>Tolaga Bay, East coast of New Zealand</td>
<td>38 22</td>
<td>181 14</td>
<td>6 0</td>
</tr>
<tr>
<td>Mercury Bay, N. E. ditto</td>
<td>36 48</td>
<td>184 4</td>
<td>7 30</td>
</tr>
<tr>
<td>River Thames, ditto</td>
<td>37 12</td>
<td>184 12</td>
<td>9 0</td>
</tr>
<tr>
<td>Bay of Islands, ditto</td>
<td>35 14</td>
<td>185 36</td>
<td>8 0</td>
</tr>
<tr>
<td>Queen Charlotte's Sound, Cook's Strait</td>
<td>41 0</td>
<td>184 45</td>
<td>9 30</td>
</tr>
<tr>
<td>New Zealand</td>
<td></td>
<td></td>
<td>7 6</td>
</tr>
<tr>
<td>Admiralty Bay, in ditto</td>
<td>41 45</td>
<td>185 12</td>
<td>10 0</td>
</tr>
<tr>
<td>Botany Bay, coast of New South-Wales</td>
<td>34 0</td>
<td>208 37</td>
<td>8 0</td>
</tr>
<tr>
<td>Bussard Bay, ditto</td>
<td>24 30</td>
<td>208 20</td>
<td>8 0</td>
</tr>
<tr>
<td>Thirsi Sound, ditto</td>
<td>25 5</td>
<td>210 24</td>
<td>11 0</td>
</tr>
<tr>
<td>Endeavour River, ditto</td>
<td>15 26</td>
<td>214 46</td>
<td>9 30</td>
</tr>
<tr>
<td>Endeavour's Strait, which divides New Guinea from New Holland</td>
<td>10 37</td>
<td>218 45</td>
<td>1 30</td>
</tr>
</tbody>
</table>

XXVI. An
XXVI. An Account of a new Electrometer, contrived by Mr. William Henly, and of several Electrical Experiments made by him, in a Letter from Dr. Priestley, F.R.S. to Dr. Franklin, F. R. S.

Dear Sir,

Read May 28, 1772. I THINK myself happy in an opportunity of giving you a species of pleasure, which I know is peculiarly grateful to you as the father of modern electricity, by transmitting to you an account of some very curious and valuable improvements in your favourite science. The author of them is Mr. Henly, in the Borough, who has favoured me with the communication of them, and has given me leave to request, that you would present them to the Royal Society.

In my history of electricity, and elsewhere, I have mentioned a good electrometer, as one of the greatest desiderata among practical electricians, to measure both the precise degree of the electrification of any body, and also the exact quantity of a charge before the explosion, with respect to the size of the electrified body, or the jar or battery with which it is connected; as well as to ascertain the moment of time, in which the electricity of a jar changes, when, without making an explosion, it is discharged by giving
giving it a quantity of the contrary electricity. All these purposes are answered, in the most complete manner, by an electrometer of this gentleman’s contrivance, a drawing of which I send you along with the following description.

The whole instrument is made of ivory or wood, [Tab. XI.] (a) is an exceeding light rod, with a cork ball at the extremity, made to turn upon the center of a semicircle (b), and so as always to keep pretty near the limb of it, which is graduated: (c) is the stem that supports it, and may either be fixed to the prime conductor, or be let into the brass knob of a jar or battery, or set in a stand, to support itself.

The moment that this little apparatus is electrified, the rod (a) is repelled by the stem (c), and consequently begins to move along the graduated edge of the semicircle (b); so as to mark with the utmost exactness, the degree in which the prime conductor, &c. is electrified, or the height to which the charge of any jar or battery is advanced; and as the materials of which this little instrument is made are very imperfect conductors, it will continue in contact with any electrified body, or charged jar, without dissipating any of the electricity.

If it should be found, by trial in the dark, that any part of this instrument contributes to the dissipation of the electric matter, (which, when the electrification was very strong, I once observed mine to do) it should be baked * a little, which will presently prevent it. If it is heated too much, it will not receive electricity readily enough; and then the motion of the index will not correspond with sufficient

* Warmed a little, to dry off the damps, particularly from the index.
exactness, to the degree in which the body to which it is connected is electrified; but this inconvenience is easily remedied, by moistening the stem and the index, for the semicircle cannot be too dry.

I find by experience, that this electrometer answers all the purposes I have mentioned, with the greatest ease and exactness. I am now sure of the force of any explosion before a discharge of a jar or battery, which I had no better method of guessing at before, than by presenting to them a pair of Mr. Canton's balls, and observing their divergency at a given distance; but the degree of divergency was still to be guessed at by the eye, and the balls can only be applied occasionally; whereas this instrument, being constantly fixed to the prime conductor or the battery, shews, without any trouble, the whole progress of the charge; and, remaining in the same situation, the force of different explosions may be ascertained with the utmost exactness before the discharge.

If a jar be loaded with positive electricity, and I want to know the exact time when, by attempting to charge it negatively, it first becomes discharged, I see every step of its approach to this state by the falling of the index; and the moment I want to seize, is the time when it has got into a perpendicular situation, which may be observed, without the least danger of a mistake. Accordingly I find that, in this case, not the least spark is left in the jar. If I continue the operation, the index, after having gained its perpendicular position, begins to advance again, and thereby shews me the exact quantity of the opposite electricity that it has acquired.
Confidering the admirable simplicy, as well as the great usefulness of this instrument, it is something surprizing that the construction should not have occurred to some electrician before this time. Nollet's and Mr. Waits's invention of threads, projecting shadows upon a graduated board, resembled this apparatus of Mr. Henly's, but was a poor and awkward contrivance in comparison with it; nor was Richman's gnomon, though a nearer approach to this construction, at all comparable to it; and the ingenious author of it had no knowledge of either of those methods when he hit upon this.

I have made a receptacle for this instrument in my prime conductor, and I have also a pedestal in which I can fix it; and by means of which I can very conveniently place it on the wires of a battery.

In either of those situations it answers almost every purpose of an electrometer, without removing it from its place.

I doubt not that you and all other electricians will join with me in returning our hearty thanks to Mr. Henly for this excellent and useful instrument.

Many of the effects of my battery, in breaking of glass, and tearing the surface of bodies, Mr. Henly performs by a single jar, only increasing the weight with which the bodies are pressed, while the explosion is made to pass close under them.

By this means he raises exceeding great weights, and shatters strong pieces of glass into thousands of the smallest fragments; he even reduces thick plate glasses by this means to an impalpable powder. But

* Frequently six pounds Troy.
what is most remarkable is, that when the pieces of glass are thick, and strong enough to resist the shock, they are marked by the explosion, with the most lively and beautiful colours, generally covering the space of about an inch in length, and half an inch in breadth.

In some of the pieces which he was so obliging as to send me, these colours lie all intermixed and confused; but in others I observe them to be disposed in prismatic order, in lines parallel to the course of the explosion, and in some (as N° 1.) I have counted three or four distinct returns of the same colour.

He has lately informed me, that, since he sent me this piece, he has struck these prismatic colours into another mass of glass, in a still more vivid and beautiful manner, the colours shooting into one another. This effect, he says, was produced by making a second explosion, without moving any of the apparatus after the first.

When the glass in which these colours are fixed is examined, it is evident that the surface is shattered into thin plates, and that these give the colours, the thickness of them varying regularly, as they recede from the path of the explosion.

In the middle of these coloured spots (as in N° 2.) some of these thin plates, or scales, are struck off, I suppose by the force of the explosion; and with the edge of a knife they are all easily scraped away, when the surface of the glass is left without its polish (as in N° 3.)

The piece of glass on which I have marked these numbers, as well as that on which he has struck the

A a a 2
colours
colours in a still more beautiful manner, Mr. Henly will present to the Royal Society, for the inspection of the members.

Besides these improvements, Mr. Henly has likewise, in a very ingenious manner, diversified several of the more entertaining experiments in electricity, particularly in his imitation of the effects of earthquakes by the lateral force of explosions; and he has also hit upon several curious facts, that, unknown to him, had been observed before by others: the following particular, however, I believe is new, exciting a stick of sealing wax, and using a piece of tin foil for the rubber, he found that it would electrify positively, as well as glass rubbed with silk and amalgama.

Wishing we had more such fellow labourers as Mr. Henly, I am,

DEAR SIR,

Your obliged

humble servant,

Leeds,
Oct. 26, 1770.

J. Priestley.

XXVII.
Read May 28, 1772.

XXVII. Meteorological Observations at Ludgvan in Mount's-Bay, Cornwall, 1771: By William Borlase*, D. D. F. R. S. Communicated by Dr. Jeremiah Milles, Dean of Exeter, and F. R. S.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>Hi. 23 30; 5</td>
<td>The 1st at night a violent storm, and rain till midnight. On the 2d at 8 P. M. a violent storm, which continued all night; stormy the 3d and 4th; ditto the 26th at night; wind Westerly. On the 30th at night, after hail showers, a great fall of snow; the 11th great snow falling, with stormy blasts; the 12th deep snow and more falling, with frost; deep snow, and hard frost, the 13th, 14th, 15th, 16th, 17th, 18th, and 19th, snow lying deep, but the frost more gentle and the thaw came on; the 20th P. M. it thawed fast; on the 21st in the afternoon, the frost and snow was all gone; the rest of the month mostly misty with some hard showers of rain. Wind, during the storms, misty, and rain, Westerly for 16 days; during the cold, East, and East North East.</td>
<td>Hi. 1 50</td>
<td>Monthly Med. of beat for each day. Inches.</td>
</tr>
</tbody>
</table>

* This is the last paper of this kind, which the Society will receive from the excellent author of the Natural History of Cornwall, and several other learned works; death having, though at an advanced age, put a period to a life divided between the pursuit of useful and experimental knowledge, and the faithful discharge of every moral and religious duty. M. M.

Month
State of the Weather and Wind.

<table>
<thead>
<tr>
<th>Month</th>
<th>Barometer</th>
<th>Fahrenheit's Thermometer</th>
<th>Ombr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Highest 3 30.16</td>
<td>Med. 21 52</td>
<td>Inches. 432.1</td>
</tr>
<tr>
<td>February</td>
<td>Lowest 25 28.37</td>
<td>Lowest 11 30</td>
<td>1.500</td>
</tr>
<tr>
<td>March</td>
<td>Highest 19 30.0</td>
<td>13 49.1</td>
<td>2.000</td>
</tr>
<tr>
<td></td>
<td>Lowest 12 29.15</td>
<td>Lowest 25 30</td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>Highest 18 30.27</td>
<td>22 53</td>
<td>0.900</td>
</tr>
<tr>
<td></td>
<td>Lowest 30 29.50</td>
<td>Lowest 16 35</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>Highest 23 30.8</td>
<td>14 65.1</td>
<td>2.250</td>
</tr>
<tr>
<td></td>
<td>Lowest 7 29.18</td>
<td>Lowest 1 45</td>
<td></td>
</tr>
</tbody>
</table>

- Calm, the 3d, 4th, 5th, 6th, 7th, 9th, 14th, 15th, 17th, 18th, 21st, 22d; hard frost with some snow on the 9th, 10th, 11th, 12th, 13th, 14th. It then thawed, and the frost was hazy, misty, showery, with some high winds on the 15th and 27th. Wind, during the cold, East and North, the rest South for 18 days.

- Calm, the 3d, 4th, 5th, 6th, 7th, 8th, 15th, 18th, 19th, 20th, 21st, 27th, 31st. Frost 6th, 7th, 23d, 25th, 28th; hail, snow, and fleet 23d, 24th, 25th, 27th, 28th. Stormy the 1st, 13th. Wind 27 days from the East mixed equally with North and South.

- Calm, the 1st, 5th, 9th, 10th, 12th, 13th, 14th, 19th, 20th, 21st, 23d, 26th, 27th, 29th, 30th. Hailed, snow lying only 2 days, viz. the 15th and 16th. Rest mostly fair, and dry. Wind 18 days from the East; the rest mixed, and changeable.

- Calm, 1st, 2d, 3d, 4th, 5th, 8th, 9th, 10th, 11th, 12th, 13th, 14th, 15th, 16th, 17th, 18th, 19th, 20th, 21st, 22d, 23d, 24th, 25th, in all 23 days. Stormy only on the 27th. Wind Southerly 23 days; the rest not fixed.
<table>
<thead>
<tr>
<th>Month</th>
<th>Barometer</th>
<th>State of the Weather and Wind</th>
<th>Fahrenheit's Thermom.</th>
<th>Ombr.</th>
</tr>
</thead>
</table>
| June | Highest 3 30,15
Lowest 1 29,54 | Calm, 3d, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th, 12th, 13th, 14th, 15th, 20th, 21st, 22d, 23d, 24th, 25th, 26th, 27th, 28th, 29th, 30th (in all 24 days) the wind variable and mixed, but the weather remarkably settled, fair, and pleasant. On the 28th however, there was most violent thunder, lightning, and a flood of rain, at the towns of Penryn and Falmouth, 20 miles distant from Mount's-Bay to the East; but in Mount's-Bay, the air was cloudy, and only some distant thunders; the lightning was scarce visible, and not a drop of rain. | Highest 27 71½
Lowest 3 49 } 58.9° 4½° | 0.200 |
| July | Highest 14 30,15
Lowest 31 29,50 | Calm, 1st, 2d, 3d, 4th, 5th, 6th, 7th, 10th, 13th, 14th, 15th, 16th, 17th, 18th, 23d, 24th, 25th, 27th, 28th, 29th, 30th, the rest mixed. Wind 24 days from the West, mixed mostly with the South. N. B. As we had a most unusual run of dry weather here in Cornwall, in other parts of the world, they had altogether as extraordinary a glut of rain. See, for particulars, the publick papers, from Berlin, Dresden, Hamburg, and Vienna, &c, in Europe, and from Virginia in North America, where their inundations have not been remembered so destructive. | Highest 17 72. } 61.3° 4½° | 0.720 |

Month.
<table>
<thead>
<tr>
<th>Month</th>
<th>Barometer</th>
<th>State of the Weather and Wind</th>
<th>Fahrenheit’s Thermom.</th>
<th>Ombr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>August</td>
<td>Highest 39 30.0</td>
<td>Calm, 1st, 2d, 3d, 4th, 5th, 6th, 15th, 17th, 22d, 23d, 26th, 27th, 28th, 29th, 30th, 31st; the rest milty, foggy, and rains, with some gales interspersed. Wind 28 days from the West, mixed, nearly equal with North and South.</td>
<td>Highest 31 66.0</td>
<td>Med.</td>
</tr>
<tr>
<td></td>
<td>Lowest 19 29.4</td>
<td></td>
<td>Lowest 15 54.0</td>
<td>Inches 3.633</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>Highest 28 30.6</td>
<td>Calm, 2d, 3d, 5th, 6th, 10th, 11th, 12th, 13th, 14th, 15th, 16th, 17th, 18th, 24th, 25th, 26th, 28th; the rest hazy, cloudy, windy, mixed with rain. Wind mostly West, mixed with the North.</td>
<td>Highest 1 61.0</td>
<td>55.3</td>
</tr>
<tr>
<td></td>
<td>Lowest 20 29.30</td>
<td></td>
<td>Lowest 26 46.5</td>
<td>Inches 3.400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>Highest 31 30.33</td>
<td>Calm, only 8 days A. M. only 2 days P. M.; the rest rainy, windy, stormy. A violent storm on the 13th and 14th; the extremity on the 14th at 10 P. M. wind South West. N. B. on the 13th, at Caton near Lancaster, happened the greatest inundation in the memory of man. Wind 23 days from the West, mixed mostly with the South.</td>
<td>Highest 8 57.0</td>
<td>51.7</td>
</tr>
<tr>
<td></td>
<td>Lowest 13 28.85</td>
<td></td>
<td>Lowest 31 45.0</td>
<td>4.550</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>Highest 18 30.40</td>
<td>Calm, 1st, 2d, 3d, 4th, 5th, 6th, 7th, 8th, 9th, 13th, 18th, 19th, 20th, 22d, 25th, 26th, 27th. On the 11th, 12th, 15th, 16th, stormy with rain and showers. Wind 24 days from the West, mixed mostly with the South. N. B. This month was very dry in Cornwall; but by the incessant rains in the middle of it, from the 15th to the 17th, such inundations happened at Newcastle, Durham, Barnardcastle, and near Carlisle, by the breaking out of Solway-mosses, as have never been known to be destructive.</td>
<td>Highest 16 55.0</td>
<td>47.4</td>
</tr>
<tr>
<td></td>
<td>Lowest 11 29.40</td>
<td></td>
<td>Lowest 10 39.0</td>
<td>1.450</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>---</td>
<td>------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>December</td>
<td>Higheft 30 30,4</td>
<td>Calm, 1st, 2d, 8th, 13th, 17th, 18th. On Friday the 6th (new-moon at 8 A.M. wind South by East, and South East) about 8 P.M. it blew a violent storm, and setting full into Mount's-Bay at spring-tide, the sea was so high, and furious, that it demolished houses, cellars, boats, and walls, wherever it reached. The four towns on the shore all suffered; and it has been calculated, that not less than £5,000 damage was done here that night, besides ships lost. It reached to the Eafterd; and at Plymouth, about 60 miles off, they reckoned the tide was higher by ten feet than usual. The remainder of this month was showery, rainy, windy. Wind Westerly 24 days, mixed mostly with the South.</td>
<td>Higheft 11 54 } 46,8 4</td>
<td>5,350</td>
</tr>
<tr>
<td></td>
<td>Lowest 7 28,40</td>
<td></td>
<td>Lowest 30 36) 46,8 4</td>
<td>5,350</td>
</tr>
</tbody>
</table>

The whole Rain fallen in this Year 1771, at Ludgvan, a very dry Year,
XXVIII. Account of several Quadrupeds from Hudson's Bay*, by Mr. John Reinhold Forster, F. R. S.

Read May 21, 1772.

Severn River.

A most beautiful specimen in its snowy winter fur; this animal seems to be lower on its legs than the common fox, and is prodigiously well secured against the intense cold of the climate, by the thickness and length of its hairs, which are at the same time as soft as silk.

* Among the occasional advantages, which the observations of the last Transit of Venus have procured, that of receiving useful informations from, and setting correspondencies in, several parts of the world, is not the least considerable. From the factory at Hudson's Bay, the Royal Society were favoured with a large collection of uncommon quadrupeds, birds, fishes, &c. together with some account of their names, place of abode, manner of life, uses, by Mr. Graham, a gentleman belonging to the settlement on Severn River; and the governors of the Hudson's Bay Company have most obligingly sent orders, that these communications should be from time to time continued. The descriptions contained in the following papers were prepared and given by Mr. Forster, before his departure on an expedition, which will probably open an ample field to the most important discoveries. M. M.

The
The account sent along with it from Severn River says, that these white foxes are silly, inoffensive animals; and are known to stand by, whilst a trap is baited for them, into which they put their heads immediately: they will, when pinched by hunger, devour those of their own kind, which are already caught in these traps. But the most curious circumstance is, their migration to the Northward and the Eastern coasts of the bay; for though a few of them are caught every year near York fort and Churchill river, yet, once in three or four years, they come in great numbers; and several hundred of their furrs are sent to England in that plentiful seasons, which always begins in November, and ends in April. The specimen sent is full grown, and its furr quite in season.

Severn River.

I am still dubious, whether this animal ought to be looked upon as the same with the leffer otter of Europe and Asia; many circumstances seem to prove this identity; but some, such as the want of webs, which I could not discover between the toes, and the white spot on the neck, will not admit of it. I have, therefore, subjoined a description of this creature at the end of this article. The natives of Hudson’s Bay call this quadruped Jackash;
Jackash; Mr. Graham from Severn river says, that it harbours about creeks, and lives on fish, like the otter; it travels very slowly, and has from four to seven young at a time; in size it equals the marten; its length is about 16 inches; its whole body is covered with shining dark brown hairs, which lie very close, and seem perfectly convenient for an amphibious animal; under these brown hairs the woolly hairs are tawny, the whole underjaw is encompassed by a stripe of white hairs, and a little irregular spot of the same colour appears in the middle of the throat; the feet are quite covered with hair to the very nails, which are small, five on each foot, and of a whitish semipellucid colour; the tail is pretty well beset with hair, though not bushy, and much blacker than the rest of the body; it is about half as long as the whole animal.

These seem to be a variety of the yellow-breasted marten, Br. Zool. I. 31. their colour, especially in the females, being much paler than that described in Mr. Pennant's works. The male is of a chestnut brown, the female a bright tawny yellow; the former has here some dark brown hairs, the latter in the same manner has some bright bay hairs. They both have white cheeks, and white tips of the ears. Their furs are very full of hair, proper.
proper to preserve them from the cold. The tail in both sexes is bushy, and darker than the rest of the body; in the female indeed it is tawny, with a black tip; in both it is shorter than described by Mr. Pennant, Mr. Brisson, and others, and was perhaps mutilated. This species feeds on mice, rabbits, &c. though it will not touch a dead mouse which is put as a bait in a trap, and therefore the inhabitants are obliged to make use of a partridge’s head, or the like, for that purpose. If pursued with noise, it immediately gets up into a tree. Some gentlemen have unsuccessfully attempted to tame these creatures, and those kept in cages with that view have been observed to be troubled with epileptick fits. Numbers of them are caught at Hudson’s Bay in traps made of small sticks. They burrow under ground, and bring forth from four to seven young at a time.

Severn River, Albany Fort.

One in the summer and another in the winter dress. The natives about Albany call them: *Sic-cuʃe-fue*, but it is not known why they give them that name. They feed on mice, small birds, all sort of fish, flesh, and fowl.

One in its winter dress, length 7 inches, tail about 1 inch, perhaps mutilated; it is quite white, but
the coat is mixed here and there with a brownish hair, especially in the tail. Another in the summer coat, the same as our weasel.

It answers to Mr. Pennant's description, except that the white stripe on the head is not connected with that on the back, and that the brown area, which is left between the two white stripes on the back, is broader than he describes it.

Severn River.

It agrees perfectly with the descriptions. These animals live among the pine trees, of which the bark is their food in winter, as willow tops and the like are in summer. They copulate in September, and bring forth only one young the first week in April. During winter they seldom travel above five hundred yards, so that one is always sure of finding a porcupine, as soon as one meets with a tree that has been freshly stripped of its bark. The longest quills of an old porcupine are about five inches long. The Europeans are very fond of the flesh of these animals, as it tastes, when roasted, exactly like that of a fucking pig. Their bones in winter have a greenish yellow colour, perhaps owing to their continually feeding on the bark of pine trees. It is known that
that the bones of animals will become red by their feeding on madder.

 Castor Fiber. Linn.

Churchill River, N° 1.
 A most beautiful specimen, in high preservation, and in full season; the fur is of a fine jetty black: the skull of another has likewise been sent. There is a great similarity in the conformation of the cutting teeth of this and the preceding quadruped (the porcupine); only the latter has them longer.

 Castor Zibethicus. Linn.

Musquash, Severn River.
 It frequents the plains, builds a house like the beaver, brings forth from five to seven young at a time, and feeds on poplars, willows, and grass.

York Fort.
 A fine specimen, in its compleat winter fur, being quite white, except the ears, which have black tips. It is much larger than the following animal. The common hare, *Penn. Syn. Quadr.* does not seem to be a native of America.
II. American Hare, called Rabbit at Hudson's Bay. Kalm's Trav. into N. Amer. I. 105. II. 45.

Severn and Churchill Rivers.

This species, which has been improperly called Rabbit, perhaps because it is less than the hare, is certainly new, and was never described before, except by Kalm in his travels through North America, Vol. I. 105. II. 45. The account he there gives corresponds with that of Mr. Graham, and with the specimen now in the Royal Society's collection. These animals are numerous at Hudson's Bay; they do not burrow under ground, but live summer and winter under windfalls and roots of trees. They do not migrate, but always keep about the same place, unless disturbed. They breed once or twice a year, and have five to seven young at a time: their weight is from 3 to 4½ pounds. Their flesh is not so white and delicate as that of the common rabbit, but yet is good food in summer and winter. Great numbers of them are annually caught in the following manner: as they always are used to go one particular path, the English and natives lay young trees across it, forming a hedge, in which there is an opening for the creature to go through; in this place they fix a snare, made of braids wire, packthread, or the like, fastened with a slipping knot to a cross piece, the end being tied to an elastic pole; so that when the animal puts its head into
into the snare, the knot is drawn from the cross piece above, and the pole flying up, immediately suspends the animal in the air.

The proper characteristicsticks of this species seem to be,

1. Its size, which is somewhat bigger than a rabbit's, but less than that of the Alpine or lesser hare.

2. The proportion of its limbs, its hind feet being longer in proportion to the body than those of the rabbit and the common hare. Vide the Hon. Daines Barrington's, V.P.R.S. letter to Dr. Watson on this new species of hare, in this volume, p. 6.

3. The tips of the ears and tail, which are constantly grey not black. Kalm's Trav. II. p 45.

Perhaps some other characters might be ascertained, if the animal was brought over in its perfect summer fur; for all the specimens in the Royal Society's Museum are either entirely in their winter dress, or in a changing condition. Mr. Kalm mentions, that those which are found in New Jersey, where the climate is much more mild than at Hudson's Bay, keep the same grey colour both summer and winter; that in spring they breed in hollow trees, but in summer in the grass; that, when pursued, they immediately take refuge in hollow trees, whence they are driven out by crooked sticks, smoak, &c.; lastly, that they do much mischief to cabbage fields and orchards, by eating the cabbage plants, and
the bark of the apple trees, feeding only by night, as the common hare.

Churchill River, No. 5.
This creature is called a ground squirrel, at Churchill fort; it differs much in size from that described in the Syn. Quadr, being much less than a rabbit, perhaps it is a young one. I took down the following description, as I did not find it exactly corresponding with that of the Canada marmot. The nose is blunt, the ears are short and roundish, the top of the head chestnut, back all over sprinkled with whitish, black, and yellowish brown; the legs and whole underside of the animal are of a bright ferruginous colour; the tail is very short, and black at the tip. The length of the animal from the nose to the beginning of the tail is about 11 inches, that of the tail 3 inches. Its toes on the fore feet 4, hind feet 5.

A variety of the common species, being somewhat inferior in size, having a ferruginous back and grey belly, a shorter tail than the common European sort, of a fine ferruginous red, edged only with black. This animal lives in pine trees, of which the cones are its food; it lies dormant the greater part of the winter.

Severn River.

It is equal in size, if not bigger than the common squirrel; has pretty long hairs, dusky at bottom, tawny brown at the very tips only; and disposed so that the back appears wholly of that reddish brown colour; the tail is very bushy, somewhat compressed, but not pinnated (i.e. with the hairs disposed horizontally on each side of it, as for example in the common squirrel), it is brownish on the upper side with a dusky tip, of a yellowish white below; the whole underside of the animal has the same yellowish white colour. The membrane reaches from the forefeet to the hindfeet, without extending to the ears: it is found in James's Bay, about 51° north latitude.

This is perhaps Linneus's Sciurus volans, and the same with the flying squirrel of the Arctic parts of Europe. Mr. Brisson seems to have confounded this, and the little Virginian squirrel together, and his quotations are quite confused. Linneus's Mus volans certainly is a variety of the little flying squirrel, of the milder parts of North America, New York, Pennsylvania, Virginia, which is vastly different from this in size and colour.

15. A Small Animal, called a Field Mouse.

Churchill River.

A specimen in very bad preservation, wanting legs, tail, &c. which makes it impossible to determine
termine of what species it is; its size is somewhat superior to that of a mouse, its colour dusky, mixed with tawny brown, and dirty white on the belly; its head is broad, like that of the short-tailed field mouse, and has a dusky line in the middle between the eyes, which extends, though rather indistinctly, all along the back; its ears are very small and roundish.

16. This is likewise a very bad mutilated specimen, less than the common mouse, dusky and brown above, and whitish below; its ears are pretty large and prominent.

 Two specimens; the descriptions answer pretty well, the ears are large and round, the tail is very long and whitish below.

 Mr. Pennant's admeasurements do not quite answer, but M. d'Aubenton's coincide.

 The specimen is much blacker on the back than the European Shrew, its sides are reddish brown.
20. Shrew; two specimens.
The colour is of a dusky grey above, and a dirty white or yellowish below; the nose is very long and slender; the length from the nose to the tail, in the one specimen is 2 1/4, in the other almost 2 inches; the tail is about an inch and half long, thinly beset with hairs, brown above, and yellowish below. If this species had no tail, I should take it to be the minute Shrew, which the Rev. Mr. Laxman found in Siberia, and which is the Sorex minutus. Linn.
XXIX. An Account of the Birds sent from
Hudson’s Bay; with Observations relative
to their Natural History; and Latin De-
scriptions of some of the most uncommon.
By J. R. Forster, F. R. S.

Read June 18—25, 1772.

I. LAND-BIRDS.

1. Accipitres

Severn river, N° 19.

This species is called a small-bird hawk at Hud-
son’s Bay. It is migratory, arriving near Se-
vern River in May, breeding on the coast,
and then retiring to a warmer climate in
autumn. It feeds on small birds; and, on
the approach of any person, will fly in circles,
making a hideous shrieking noise. The breast
and belly are yellowish, with brown streaks, which are not mentioned by the ornithologists, though their descriptions answer in other respects. It weighs five ounces and a half, its length is $10\frac{1}{2}$, the breadth $22\frac{1}{2}$. Catesby's figure is a very indifferent one.

This species, at first sight, bears some resemblance to the European Moor Buzzard, or *Aeruginosus*, Linn. but is much less, and wants the light spots on the head and shoulders. No number or description was sent along with it.

Severn River, No. 16.

Speckled Partridge Hawk, at Hudson's Bay.

The name is derived from its feeding on the birds of the Grous tribe, commonly called partridges, at Hudson's Bay. Its irides are yellow, and the legs blue. It comes nearest the *Sacre* of Brisson, Buffon, and Belon; but Buffon says it has black eyes, which is very indistinct; for the irides are black in none of the falcons, and in few other birds; and the pupil, if he means that, is black in all birds. It is said, by Belon, to come from Tartary and Russia, and is, therefore, probably a northern bird. It is very voracious and
and bold, catching partridges out of a covey, which the Europeans are driving into their nests. It breeds in April and May. Its young are ready to fly in the middle of June. Its nests, as those of all other falcons, are built in unfrequented places; therefore, the author of the account from Severn River could not ascertain how many eggs it lays; however, the Indians told him it commonly lay two. It never migrates, and weighs 2½ pounds; its length is 22 inches, its breadth 3 feet.

Severn River, No. 17 and 64. Mouse Hawk at Hudson's Bay. It answers the description and figure in the British Zoology; but its ears or long feathers do not appear. The smallness of the head has, probably, given occasion to call it a hawk, though it does not fly about in quest of prey, like other hawks (as the account from Severn River says); it sits quiet on the stumps of trees, waiting mice with all the attention of a domestic cat, being an inveterate enemy of those little animals. It migrates southward in autumn; and breeds along the coast. Its irides are yellow. Its weight is 14 ounces; its length 16 inches, the breadth 3 feet.

It seems to be in its winter dress, as it is entirely white. The feet are covered with long white hair-like feathers to the very nails, but there are none on the soles or under parts of the toes.

Cabeticuch, or Cabaducutch, is the Indian name of this bird. Linneus's description answers perfectly. The male, which in the class of birds of prey is generally smaller, is, however, in this species, larger than the female, according to the account from Severn River. Its colour is likewise much blacker, and the spots more distinct. The eyes are large and prominent; the irides of a bright yellow. The weight is 12 ounces; its length 17 inches, the breadth 2 feet. It has only two young at one hatching.

(The number belonging to this bird is lost, but it is most probably that from Severn River, No 15. called Shipomossip by the natives).
The crown of the head is speckled with white, as in the Strix funerea.
Severn River, No 36.
This fine non-descript owl lives upon hares, ptarmigans, mice, &c. It has two young at a time. The specimen sent over is said to be one of the largest. It is not described by any author. Its weight is 3 pounds, length 16 inches, breadth 4 feet.

Severn River, No 11.
White Whiskijohn at Hudson's Bay. The specimen is a male; it weighs two ounces and a half, is seldom found on the coast, but frequent about a hundred miles inland; and feeds on small birds. It corresponds with ours in every respect.

II. { Picæ.

Severn River, No 9 and 10.
These birds are called Whiskijohn and Whiskijack at the Hudson's Bay. They weigh 2 ounces; and are 9 inches long, and 11 broad. Their eyes are black, and their feet of the same colour. Their characters correspond with the Linnean description. They breed early in spring; their nests are made of sticks and grafts,
grafs, and built in pine trees; they have two, rarely three, young ones at a time; their eggs are blue; they fly in pairs; the male and female are perfectly alike; they feed on black moss, worms, and even flesh. When near habitations or tents, they are apt to pilfer every thing they can come at, even salt meat; they are bold, and come into the tents to eat victuals out of the dishes. They watch persons baiting the traps for martins, and devour the bait as soon as they turn their backs. These birds lay up stores for the winter, and are seldom seen in January, unless near habitations; they are a kind of mock-bird; when caught, they pine away and die, though their appetite never fails them.

Albany Fort, No 5.
It is called One-ta-kee-aske, i. e. Heart-bird, by the Indians. It is a bird of passage, and rarely seen; it agrees, in all respects, with the European magpie, upon comparison.

Catesby, I. 18.

Albany Fort, No 4. the large Woodpecker.
The natives of America call this bird Ou-thee-
quin-nor-now, from the yellow colour of the
shafts of the quill and underside of the tail
feathers. It is a bird of passage; visits the

D d d 2
neighbourhood of Albany Fort in April, leaves it in September; lays from four to six eggs in hollow trees, feeds on small worms and other insects. Its descriptions answer exactly.

Picus, 13. Villosus, 175. 16. Hairy Woodpecker.

Severn River, N° 56.

The specimen sent over is a female, by its wanting the red on the head. The descriptions of Linneus and Briffon agree; only the two middlemost feathers are black, the next are of the same colour, but have a white rhomboidal spot near the tip; the next are black, with the upper half obliquely white, the very tip being black; the next after that are white, with a round black spot on the inner side close to the base, and the lower part of the shaft is black, the outermost feathers are quite white, the shaft only at the base being black.

14. Tridactylus. 177. 21. Three-toed Woodpecker.

Faun. Am. Sept.

Severn River, N° 8.

A female, weight 2 ounces, length 8 inches, breadth 13; eyes dark blue, legs black. It builds its nest in trees, lives in woods upon worms picked out of trees, is not very common at Severn River. The descriptions answer.

III. Gallinæ.

Grous. {Canace, 275. 7.} Spotted Grous.
Gelinotte du Canada, male et femelle, Pl. enl.
131 et 132. Buffon Oifeaux II. p. 279. 4to.
Briſfon I. p. 203. t. 20. f. 1, 2, and p. 201. app.
Severn River, N° 5. Woodpartridge.
These birds are all the year long at Hudson’s
Bay, and never change the colour of their
plumage. The accounts from Hudson’s Bay
fay, there is no material difference between
the male and female; which must be a mis-
take, as they are really very different. Lin-
neus’s descriptions of the Tetrao Canadenfis,
and Canace, both answer to the specimens sent
over, fo that, after comparing them, I find
they are only one and the same species. I
suppose the dividing them into two, was oc-
casioned by Briſfon’s and Edwards’s descrip-
tions, being taken from specimens sent from
different parts of the continent of America,
and perhaps caught at different feafons. Mr.
de Buffon has, I find, the fame opinion with
me, and by comparing the drawings of Ed-
wards, with those of the Planches enluminees,
it is put beyond a doubt. These birds are
very stupid, may be knocked down with a
flick, and are frequently caught by the na-
tives.
tives with a stick and a loop. In summer they are good eating; but in winter they taste strongly of the pine spruce, upon which they feed during that season, eating berries in summer. They live in pine woods, their nests are on the ground; they generally lay but five eggs.

Severn River. No 1—4. Willow-partridges. The Hudson's Bay ptarmigan has been separated from the European in the British Zoology, and afterwards by M. de Buffon: however, I must own, I cannot yet find the differences which they assign to these species. They contend that the Hudson's Bay bird figured by Edwards is twice as big as the European ptarmigan; Mr. Edwards, I think, does not intimate this, when he says, the bird is of a middle size, between partridge and pheasant; he on the contrary supposes them to be the same species. The British Zoology, after Willoughby, says, the ptarmigan's length is 13½ inches. The account from Severn River says it is 16½ inches. The breadth in the British Zoology is said to be 23 inches. The breadth in the Hudson's Bay birds, according to the accounts from Severn River, is 23 inches. Willoughby's ptarmigan weighed 14 ounces; that in the British Zool.
Zool. illusfr. t. 13. 19 ounces; that from the Hudson's Bay (1 ¼ lb) 24 ounces. These differences are of little consequence, and far from increasing the Hudson's Bay bird to double the size of the European. The British Zoology says, there is a difference in the summer colours; but Mr. Edwards informs us, that he compared the Hudson's Bay bird with the descriptions of former ornithologists, and found them to answer; he likewise assures us he had the same bird from Norway. Therefore I cannot help differing from the British Zoology, in this one particular, and thinking with Linneus and Buffon, that the European and Hudson's Bay ptarmigans are the same, especially as the colours vary very much in the different sexes and at different seasons. To this we may add the testimony of a gentleman well versed in natural history, who, having had opportunities of comparing numbers of Hudson's Bay and European ptarmigans, assured me that he did not see any difference between them. They go together in great flocks in the beginning of October, living among the willows, of which they eat the tops (whence they have got the name of willow partridges): about that time they lose their beautiful summer plumage, and exchange it for a snowy white dress, most providently adapted by its thickness to screen them against the severity of the season, and by its colour against their enemies the
The hawks and owls, against whose attacks they would otherwise find no shelter. Each feather is double, that is, a short one under a long one, to keep them warm. In the latter end of March, they begin again to change their plumage, and have got their full summer dress by the end of June. They breed everywhere along the coast, and have from nine to eleven young at a time; making their nests on the ground, generally on dry ridges. They are excellent eating, and so plentiful that ten thousand have been taken at Severn, York, and Churchill Forts. The method of netting or catching them, is as follows: a net made of jack-twine, twenty feet square, is laced to four long poles, and supported in front with the sticks, in a perpendicular situation; a long line is fastened to these supports, one end of it reaching to a place where a person lies concealed; several men drive the ptarmigans (which are as tame as chickens, especially on a mild, snowy day), towards the net, which they run to, as soon as they see it. The person concealed draws the line, by which means the net falls down, and catches 50 or 70 ptarmigans at once. They are sometimes rather wild, but grow better humoured (as Mr. Graham says) by being driven about, for they seldom forsake those willows which they have once frequented.

TETRAO.
Tetrao. 17. Togatus, 275. 8. Shoulder-knot
287.
Severn River, N° 60 and 61. Albany Fort 1 and 2.
This bird answers the descriptions given of it by
the ornithologists in all respects, and perfectly
resembles the figure in Briffon, and in the
Planches enluminées. It differs from Edwards's ruffed heathcock, t. 248. or Lin-
neus’s Tetrao umbellus, as the latter has
not the shining black axillary feathers, or
shoulder-knot, but a ferruginous one, is much
less, and has brighter colours. M. de Buff-
on, however, thinks they are the same,
and suspects at the same time, that the bird
which he calls la grosse Gelinotte du Canada
(and which is the same with the Society's
specimens) is the female of Mr. Edwards's
bird, t. 248. This conjecture is destroyed
by the specimens now sent from Hudson's
Bay, which by the accounts from thence are
expressly said to be males. The shoulder-
knot grouses bear the Indian name of Puskee,
or Puppskee, at Hudson's Bay, on account
of the leanness and dryness of their flesh,
which is extremely white, and of a very close
texture, but when well prepared is excellent
eating. They are pretty common at Moose
Fort and Henly House, but are seldom seen
at Albany Fort, or to the northward of the
above places. In winter they feed upon ju-
Vol. LXII. E e niper
niper tops, in summer on goose-berries, raspberry, currants, cranberries, &c. They are not migratory, staying all the year at Moose Fort; they build their nests on dry ground, hatch nine young at a time, to which the mother clucks, as our common hen does; and on the least appearance of danger, or in order to enjoy a comfortable degree of warmth, the young ones retire under the wings of their parent.

N.B. A specimen, which is supposed to be either a young bird or a female, wants the blueish black shoulder-knot; but it is the same in all other respects.

This bird, which Mr. Edwards has drawn plate 117, was by Linneus in the tenth edition of his System, ranged as a new species of grous or tetrao, by the specific name of Phasianellus (alluding to the name of Pheasant which it bears at Hudson's Bay, and likewise to its pointed tail). He afterwards in the new or twelfth edition of the System, p. 273, makes it a variety of the great Cock of the Wood, or Tetrao Urogallus, probably from the account in Mr. Edwards, that the male struts very upright, is in general of a darker colour than the female, and has a glossy neck. These circumstances, however, are not sufficient to bring
bring them under the same species, for it is known that the males of all the grous tribe, and indeed of most of the gallinaceous birds, are used to strut in a very stately manner, and that the colours of their plumage are much more distinct than those of the females. But the specific difference alone, which Linneus assigns to the cock of the wood, absolutely excludes our Hudson's Bay species; he calls it Tetrao pedibus hirsutis, cauda rotundata, axillis albis. Whoever examines Mr. Edwards's figure, and the specimens now in the Society's possession, will find the tail very short, but pointed, the two middle feathers being half an inch longer than the rest, (Mr. Edwards says two inches) and the axillæ, or shoulders, by no means white: besides this difference, the colour and size of the Hudson's Bay bird are likewise vastly different from those of the cock of the wood. Its length is 17 inches, its breadth 24, and, as Mr. Edwards justly says, it is somewhat bigger than the common pheasant. The great cock of the wood is as big as a turky; and its female, which is much less, however far exceeds our bird, it being 26 inches long, and 40 broad. See British Zool. octavo, p. 200. The figures given of the female of the T. Urogallus, or great cock of the wood, in the Br. Zool. folio, plate M*, and the Planche enlumineé 75, will serve upon comparison as a convincing proof of the vast difference there is between the Hudson's Bay pheasant grous and the European cock.
of the wood. The figure, which Mr. Edwards has given of the former bird, does not exactly correspond with the Society's specimen, as he has represented the marks on the breast half-moon shaped, though they are heart-shaped as those on the belly in the dried bird; that is, they are white spots, with a pale brownish yellow cordated brim. Nor can I agree with Mr. Edwards, when he calls this bird the long-tailed grouse from Hudson's Bay; for its tail is really very short, in comparison with that of other grouse, and its smallness and acuteness afford one of the most distinguishing characters of the species.

The native Indians call these pheasant grouses, *Oc-kis-cow*: they are found all the year long, amongst the small juniper bushes, of which the buds are their principal food, as also the buds of birch in winter, and all sorts of berries in summer. They never vary their colours; nor is there any great difference between the male and female, except in the caruncula or comb over the eye, which in the male is an inch long, and \(\frac{1}{4} \) of an inch high. The account from Albany Fort adds, that the colour of the male is somewhat browner, and almost a chocolate on the breast. Their flesh is of a light brown, exceeding juicy, and they are very plump. They lay from 9 to 13 eggs; their young can run almost as soon as they are hatched; they make a piping noise somewhat like a chicken. The cock has a shrill crowing note, not very loud;
but when disturbed, or whilst flying, he makes a repeated noise of cuck, cock. They are most common in winter at Albany Fort.

Before I leave the genus of grouses, I must observe that their feet have a peculiarity, taken notice of by few authors; the toes, in several species, have on each side a row of short flexible teeth, like those of a comb; so that the toes appear pectinated. The species, which are known to have such pectinated toes, are,

3. The Spotted Grouse, \{ *T. Canadenris*, and *T. Canace*, Linn. \}

This is a circumstance, which ought to be attended to in all other species of grouses, as it may in time afford a distinguishing character for a division in this great genus; the ptermigan, or *T. Lagopus*, Linn. is without these teeth.

IV. Com

These pigeons are very scarce so far northward as Severn river, but abound near Moose-fort, and further inland to the southward. Their common food are berries and juniper buds in winter; they fly about in great flocks, and are reckoned good eating. This account is confirmed by Kalm in his travels (English edition) Vol. II. p. 82 and 311. They hatch only two eggs at a time, and their nests are built in trees. Their eyes are small and black, the irides yellow, the feet red; the neck finely glossed with purple, brighter in the male. They weigh 9 ounces.

This species is indifferently described by Linneus, who says that all the tail-feathers on their inner web are white, (*rectricibus dimidio interior albis*); though it does not appear that he saw a specimen of it himself. Both the quill
quill and tail-feathers are dusky, and in both the outermost feather only has a white exterior margin. The coverts of the tail are of a pale ferruginous colour, and two of them are nearly as long as the tail itself. The scapulars are ferruginous; in the male, the head and whole back have a tinge of the same colour, marked with dusky streaks; in the female, the back is grey, and the dusky stripes of a darker hue. The crown of the head is black in the male, dusky in the female; the forehead is yellow, the bill and feet are black, the belly of a dirty reddish white. These larks are migratory, they visit the environs of Albany Fort in the beginning of May, but go further northward to breed: they feed on grass-feeds, and buds of the sprig-birch; run into small holes, and keep close to the ground, from whence the natives give them the name of Chi-chup-pi-fue.

Severn River, No 59. Albany Fort, 7, 8, 9.

The descriptions of these birds in various authors coincide with the specimens; at Severn River they appear at the beginning of May, and leave the environs before the frost lets in. At Moose Fort, in the north latitude 51°, they build their nest, lay their eggs, and hatch their young in the space of fourteen days; but at York fort and Severn settlement this is done.
done in 26 days: they build their nests in trees, lay four beautiful light-blue eggs, feed on worms and carrion: when at liberty they sing very prettily, but confined in a cage, they lose their melody. There is no material distinction between the male and female. Their weight is 2½ ounces, the length 9 inches, and the breadth 1 foot; they are called red birds at Hudson's Bay; their Indian name is *Pee-pee-chue*.

Turdus, 22.

Severn River, No. 54 and 55, male and female.

From the striking similarity with our blackbird, the English at Hudson's Bay have given this bird the same name. However, upon a close examination, I find the difference very great between our European blackbird, and the Hudson's Bay or American one. The plumage of the male, instead of being deep black without any gloss, as in ours, has a shining purple cast, not unlike the plumage of the *Gracula Quiscalus*, Linn. or shining Gracule, Faun. Am. Sept.; or the Maize thief, of Kalm. The female indeed is very like our female blackbird, being of a dusky colour on the back, and a dark grey on the breast. The feet and bill are quite black in both sexes; the former have the back claw almost as long again as any of the other claws. There are no vestiges of yellow palpebrae in either the male or the female; the bill in both is strong, smooth, and subulated; the upper
upper mandible being carinated, but very little arched, and without any tooth or indentation whatever, on the lower side. The nostrils are as in other thrushes. This bird has no bristles at the base of its bill, its feet have such segments as Scopoli in the Annus I. Historico-Naturalis attributes to the staries. Instead of being solitary and living retired like the European blackbirds, these American ones come in flocks to Severn River in June, live among the willows, build in all kinds of trees, and return to the southward in autumn. They feed on worms and maggots; their weight is 2¼ ounces, and they are nine inches long, and one foot broad. One that was kept twelve months in a cage pined away, and died. Notwithstanding these circumstances, I cannot help remaining undetermined with regard to this bird, which at first sight is like the blackbird, has the bill of a thrush, and the feet and gregarious nature of a stare. It is to be hoped, that future accounts from Hudfon's Bay may inform us further, of the nature of this bird, its time of incubation, the number of eggs it lays, and the colour of those eggs, together with the note of the bird, the difference and characteristical marks of both the male and female, and other circumstances, which may serve to determine to what genus and species we are to refer this bird.

Vl. LXII. Fff 10. Loxia
Severn River, No. 27 and 28.
This bird comes to Severn River the latter end of May, breeds more to the northward, and returns in autumn, in its way to the south, departing at the setting in of the frost. The irides in the male are of a beautiful red, in the female yellow: the weight is said to be 10 ounces (probably by mistake for 1 ounce, as it is impossible so small a bird should weigh more), the length is 6 inches, the breadth 10.

135. f. 1.
Severn River, No. 29, 30.
It answers to the descriptions and figures of the ornithologists pretty well; only Edwards's female has the red too bright, which is rather orange in our specimen, on the head, neck, and coverts of the tail. This bird only visits the Hudson's Bay settlements in May, on its way to the north, and is not observed to return in autumn; its food consists of birch-willow buds, and others of the same nature; it weighs 2 ounces, is 9 inches long, and 13 broad.

Severn River, No 24—26.

The bird, in summer dress, corresponds exactly with the description of the greater Brambling, Br. Zool. The description of the Snowflake, or the same bird in winter dress, ibid. vol. IV p. 19, is somewhat different, perhaps owing to the different seasons the birds were caught in, as it is well known they change their colour gradually. They are the first of the migratory birds, which come in spring to Severn settlement; in the year 1771 they appeared April the 11th, stayed about a month or five weeks, and then proceeded further northward in order to breed there; they return in September, stay till the cold grows severe in November, then retire southward to a warmer climate. They live in flocks, feed on grass-feeds, and about the dunghills, are easily caught under a small net, some oatmeal being strewn under it to allure them; they are very fat, and fine eating. The weight is 1 ounce and 5 drams, the length 6½ inches, and the breadth 10 inches.

Severn River, No 50. Albany Fort, 10.

This elegant little species of Bunting is called a hedge sparrow at Hudson's Bay, and has
not hitherto been described. It visits Severn settlement in June, and feeds on grass-feeds, little worms, grubs, &c. It weighs \(\frac{3}{4} \) of an ounce, and is \(7\frac{1}{2} \) inches long, and 9 inches broad; the bill and legs are flesh-coloured; the male is not materially different from the female, its nests are built in the bottom of willow bushes, it lays three eggs of a chocolate colour. It visits Albany Fort in May, breeds there, and leaves it in September.

12. Fringilla, \(\frac{27}{2} \). Lapponica. 317. r. Faun. Finch. \(\frac{1}{2} \) Suec. 235.
Severn river, No. 52.
It is called Tcurmasbifh, by the natives at Hudson's Bay. The description in Linneus's Fauna Suecica coincides exactly with the specimen; that in his System answers very nearly: Mr. Brisson's description (though he quotes Linneus, and Linneus quotes him) is widely different. The specimen sent over is a female; the males have more of the ferruginous colour on the head; the eyes are blue, the legs dark brown. It is only a winter inhabitant near Severn river, appears not before November, and is commonly found among the juniper trees; it weighs \(\frac{1}{4} \) of an ounce, its length is 5 inches, and its breadth 7.

Fringilla.
Severn River, N° 23.
The descriptions of Linneus, Briffon, and the British Zoology, answer perfectly well. The figure in Planche enluminée 151. f. 2. has a quite ferruginous back contrary to all the descriptions and the specimen before us, in which all the feathers on the back are dusky, edged with dirty white.

Severn River, N° 20.
This seems to be a variety, as its tail is rather longer than usual, and forked; it answers nearly to the descriptions given by the ornithologists, and seems to be a female, as it has no black under the throat and eyes, and no white collar. The bill and legs are black, the eyes blue. At Severn settlement it arrives in May, goes to breed further northwards, and returns in autumn: the weight is 3/4 of an ounce, the length 6 3/4 inches, and breadth 10. I was inclined to make this bird a new species, on account of the many differences between it and the mountain sparrow; but considering the specimen sent over was not in the best order, and might be a female, I thought it best to leave it where it is, till we are better informed.

FRIN-

Severn River, N° 18.

This is certainly a nondescript species; it only visits Severn settlement in summer, not being seen there before June, when it stays about a fortnight, goes further to the northward to breed, and passes by Severn again in autumn on its return south. It is very difficult to procure, and therefore it could not be determined whether the specimen was a male or female. It frequents the plains, and lives on grass-feeds; it weighs a half an ounce, is 6½ inches long, and 9 inches broad: it has a small blue eye, and a whitish bill faintly tinged with red; the whole body is blackish, or of a foot colour, the belly alone with the two outermost tail feathers on each side being white. It is to be wished that more specimens and circumstantial accounts of this bird were sent over, which would enable us to determine its character with more precision.

Severn River, N° 48 and 49. Male and Female.

This species visits Severn river only in summer, feeding on grass-feeds, etc.; it weighs half an ounce, is 5 inches long, and 7 inches broad; the male is widely different from the female: this species is entirely nondescript.

(The number belonging to this bird is lost; however, it is most probably that sent from Severn river, N° 53.)

It answers to the descriptions and the figure of Edwards; its weight is 4 drams, its length 4 inches, and its breath 5. It migrates, feeds on grasses, feeds and the like, and breeds in the plains; the number of eggs is not known.

Albany Fort, N° 11.

The description given by Linneus answers, and so does M. Brisson's in most particulars, except that the quill-feathers are not white on the inside. These birds stay at Albany Fort all the year, yet seem most numerous in the coldest weather; probably being then more in want of food, they come nearer the settlements, in order to pick up all remnants. They feed on flies and small maggots, and likewise on the buds of the sprig-birch, in which they perhaps only search for insects; they make a twittering noise, from which the native call them Kiss-kiss-ke-flish.

Parus...
Parus. 34. Hudfonicus. *New Species.* Hudfon's Bay Titmouse.

Severn River, No. 12.

This new species of titmouse, is called *Peche-ke-ke-∅if,* by the natives. They are common about the juniper bushes, of which the buds are their food; in winter they fly about from tree to tree in small flocks, the severest weather not excepted. They breed about the settlements, and lay 5 eggs; they have small eyes, with a white streak under them, and black legs: the male and female are quite alike; they weigh half an ounce, are 5½ inches long, and 7 inches broad.

Swallow.]

Severn River, No. 58.

The swallows build under the windows, and on the face of steep banks of the river, they disappear in autumn; and the Indians say, they were never found torpid under water, probably because they have no large nets to fish with under the ice. The specimen sent answers in some particulars to the description of the Martin, *Hirundo Urbica,* Linn. but seems to be smaller, and has no white on the rump. I have, therefore, thought it best to leave the species undetermined, till further information is received from Hudfon's Bay, on this subject.
2. Water-Birds.

Severn River, N° 35. Blue Crane.
The account from Severn settlement says, there is no material difference between the male and female; however, the specimen sent over, I take to be a female, as its plumage is in general duller than that figured by Edwards, and as the last row of white coverts of the wing are wanting. These cranes arrive near Severn in May, have only two young at a time, retire southward in autumn; frequent lakes and ponds, and feed on fish, worms, &c.
They weigh seven pounds and a half, are 3½ feet long, and 3 feet 5 inches broad; the bill is 4 inches long, the legs 7 inches, but the leg and thigh 19.

Ardea. 37. Americana, 234. 5. Hooping Crane.
14.
York Fort.
Edwards’s figure is very exact; Catesby’s is not so good, as it represents the bill too thick towards the point.
Severn River, N° 64.

At first sight, I thought the specimen sent from Hudson’s Bay, was a young bird; but upon nearer examination and comparing it with Mr. Edwards’s account and figure, I take it to be a variety of the common bittern peculiar to North America; it is smaller, but upon the whole very much resembles our bittern. Mr. Edwards’s measurements and drawings correspond very well with the specimen.

This bird appears at Severn river the latter end of May, lives chiefly among the swamps and willows, where it builds its nest, and lays only two eggs at a time; it is very indolent, and, when roused, removes only to a short distance.

Albany Fort, N° 16.

This bird is called a yellow leg at Albany fort, from the bright yellow colour of the legs, especially in old birds; a circumstance, in which it varies from the descriptions of Linneus and Brisson, probably because they de-

* In the Faunula Americæ Septentriionalis, p. 14. the synonym of Ardea Hudsonias, Linn. has by mistake been annexed to the bittern, and likewise pl. 135 of Edwards has been quoted instead of plate 136. They are two very different birds.
scribed from dried specimens, in which the yellow colour always changes into brown. It agrees in other respects perfectly well with the descriptions: it comes to Albany fort in April or beginning of May, and leaves it the latter end of September. It feeds on small shell fish, worms, and maggots; and frequents the banks of rivers, swamps, &c. It is called by the natives Sa-fa-shew, from the noise it makes.

Churchill River, No 13.

Linneus describes this bird very exactly in his Systema Naturae: the middle of the belly has no white in the Society's specimen, as that had from which the description in the Br. Zool. octavo 1. p. 353, 354, was taken. All the other characters correspond.

Albany Fort, No 15.

This species of Curlew, is not yet known to the ornithologists; the first mention is made of it in the Faunula Americæ Septentrionalis, or catalogue of North American animals. It is called Wee-kee-me-naf-fu, by the natives; feeds on swamps, worms, grubs, &c; visits Albany Fort in April or beginning of May; breeds to the northward of it, returns in August.
gust, and goes away southward again the latter end of September.

This species is well described by the ornithologists; its weight is 3¼ ounces, the length 8¼ inches, and the breadth 17 inches; it has four young at a time; its eyes are black, and the feet of a bright orange: this bird frequents the sides of the river.

(The number was lost, perhaps it is N° 17, from Fort Albany; upon that supposition the account is as follows: "the natives call it " Waw-pusk-abrea-fish, or white bear bird; " it feeds on berries, insects, grubs, worms, " and small shell-fish; visits and leaves Al-

bany fort at the same time with the Sco-

lopax Totanus, and Borealis."

I find this bird answers very well to its description; the throat, breast, and upper part of the belly are blackish, as in the descriptions, but mixed with white lunulated spots, which are neither described nor expressed in M. Brisson’s figure, and may be owing to the difference of sex, or climate.
VII. {Anseres.

Severn River, N° 44 and 45. Fishing Ducks.
Linneus’s description, and the figure in the Br. Zoology, folio, plate Q. p. 153, agree perfectly well with the specimens. The female, as Linneus observes, is quite brown, the breast and upper part of the back being of a glossy reddish brown; the speculum of the wing and the belly are white. The eyes of the male have very bright yellow irides; those of the female are of a faint dirty yellow. The female is two ounces heavier than the male, which weighs one pound and an half, is 16½ inches long, and 20 inches broad.

Severn River, N° 40, and a young one, N° 41. white Goose.

These white geese are very numerous at Hudson’s Bay, many thousands being annually killed with the gun, for the use of the settlements. They are usually shot whilst on the wing, the Indians being very expert at that exercise, which they learn from their youth; they weigh five or six pounds, are 2½ feet.
2½ feet long, and 3½ broad; their eyes are black, the irides small and red, the legs likewise red; they feed along the sea, and are fine eating; their young are bluish grey, and do not attain a perfect whiteness till they are a year old. They visit Severn river first in the middle of May, on their journey northward, where they breed; return in the beginning of September, with their young, staying at Severn settlement about a fortnight each time. The Indian name is Way-way, at Churchill river. Linneus has not taken notice of this species.

92, &c.
Severn River, No 42.
The Canada goose are very plentiful at Hudson's Bay, great quantities of them are salted, but they have a fishy taste. The specimen sent over agrees perfectly with the descriptions and drawings. At Hudson's Bay this species is called the Small Grey Goose. Besides this, and the preceding white goose, Mr. Graham, the gentleman who sent the account from Severn settlement, mentions three other species of wild gooses to be met with at Hudson's Bay; he calls them,

1. The large Grey Goose.
2. The Blue Goose.
3. The Laughing Goose.
4. The
The first of these, the large grey goose, he says, is so common in England, that he thought it unnecessary to send specimens of it over. It is however presumed, that though Mr. Graham has shewn himself a careful observer, and an indefatigable collector; yet, not being a naturalist, he could not enter into any minute examination about the species to which each goose belongs, nor from mere recollection know, that his grey goose was actually to be met with in England. A natural historian, by examination, often finds material differences, which would escape a person unacquainted with natural history. The wish, therefore, of seeing the specimens of these species of geese, must occur to every lover of that science. Mr. Graham says, the large grey geese are the only species that breed about Severn river. They frequent the plains and swamps along the coast. Their weight is nine pounds.

The blue goose is as big as the white goose; and the laughing goose is of the size of the Canada or small grey goose. These two last species are very common along Hudson’s Bay to the southward, but very rare to the northward of Severn river. The Indians have a peculiar method of killing all these species of geese, and likewise swans. As these birds fly regularly along the marshes, the Indians range themselves in a line across the marsh, from the wood to high water mark, about musket shot from each other,
so as to be sure of intercepting any geese which fly that way. Each person conceals himself, by putting round him some brush wood; they likewise make artificial geese of sticks and mud, placing them at a short distance from themselves, in order to decoy the real geese within shot: thus prepared, they sit down, and keep a good look out; and as soon as the flock approaches, they all lie down, imitating the call or note of geese, which these birds no sooner hear, and perceive the decoys, than they go straight down towards them; then the Indians rise on their knees, and discharge one, two or three guns each, killing two or even three geese at each shot, for they are very expert. Mr. Graham says, he has seen a row of Indians, by calling round a flock of geese, keep them hovering among them, till every one of the geese was killed. Every species of geese has its peculiar note or call, which must greatly increase the difficulty of enticing them.

Anas. 47. Albeola. 199. 18. The Red Duck.
Severn River, N° 37 and 38. Fishing Birds.

The descriptions and figures anfwer very well with the male, except that the three exterior feathers are not white on the outside, but all dusky.

The female is not described by any one of the ornithologifts; and therefore deserves to be noticed,
noticed, to prevent future mistakes. The whole bird is dusky, a few feathers on the forehead are rufiy, and some about the ears of a dirty white; the breast is grey, the belly and speculum in the wings white; the bill and legs are black. They visit Severn settlement in June, build their nests in trees, and breed among the woods, and near ponds; the weight of the female is one pound, its length 14 inches, and its breadth 21.

These birds frequent lakes and ponds, and breed there: they eat fish and slippery, and cannot rise off the dry land. The legs and irises are yellow; their weight is 2 1/5 pounds, and their measure 19 inches in length, and two feet in breadth. The specimen sent is the male.

This species is exactly described, and well drawn by Edwards. The Indians call it Ske-ke-fu-partem. It ought to come into the first division of Linneus’s ducks, “rostro basi gibbo,” as its bill is really very unequal at the base.
Churchill River, N° 12.

At Churchill River the Indians call this species, Har-bar-vey; it corresponds with Edwards’s description and drawing, plate 156, but differs much from Linneus’s inexact description of the Anas Hyemalis, to which he, however, quotes Edwards. Upon the whole it is almost without a doubt that the bird represented by Edwards, plate 280, and Br. Zool. folio, plate Q. 7, and quoted by Linneus for his Anas glacialis, is the male, and that the bird figured by Edwards t. 156, and quoted by Linneus for the Anas Hyemalis, is the female, of one and the same species. Linneus mentions a white body (in his Anas hyemalis), which in Edw. Tab. 156, and in the Society’s specimen, is all brown and dusky, except the belly, temples, a spot on the back of the head, and the sides of the rump, which are white. Linneus says, that the temples are black; in the specimen now sent over, and in Mr. Edwards’s figure, which Linneus quotes, they are white; the breast, back, and wings, are not black as he says, but rather brown and dusky. A further proof, that Linneus’s Anas Glacialis and Hyemalis are the same, is that the feet in both t. 156 and 280. of Edwards are red, and the bill black, with an orange spot.

ANAS.
Anas. 51. Crecca. 204. 33. Varietas. Teal.
Severn River, N° 33, 34. Male and female.
This is a variety of the teal, for it wants the
two white streaks above and below the eyes;
the lower one indeed is faintly expressed in
the male, which has also a lunated bar of
white over each shoulder; this is not to be
found in the European teal. This species is
not very plentiful near Severn river; they
live in the woods and plains near little ponds
of water, and have from five to seven young
at a time.

Anas. 52. Hisftrionica. 204. 35. Harlequin Duck.
This bird had no number fixed to it; it agrees
perfectly with Edwards's figure.

Severn River, N° 39.
It is called Stock Drake at Hudson's Bay, and
corresponds in every respect with the Euro-
pean one, upon comparison.

21. Pelecanus,} 54. Onocrotalus. 251. i. A va-
 Pelecanus. riety.
York Fort.
This variety of the pelecan, agrees in every pa-
ticular with Linneus's oriental pelecan (Pele-
H h h 2
canus
camus onocrotalus orientalis), but has a peculiar tuft or fringe of fibres in the middle of the upper mandible, something nearer the apex than the base. This tuft has not been mentioned by any author, and is likewise wanting in Edwards's pelican, t. 92. with which the Society's specimen corresponds in every other circumstance. The P. Onocrotalus occidentalis, Linn. or Edw. t. 93 American pelican, is very different from it: the chief differences are the colour, which in our Hudson's Bay bird is white, but in Edwards's is of a greyish brown; and the size, which in the white bird is almost double of the brown one. The quill-feathers are black, and the shafts of the larger ones white. The Alula, or bastard wing, is black. The bill and legs are yellow.

Churchill River, No. 8, called a Loon there.
This bird is well described and drawn in the British Zoology, in folio.

* * 156. Auritus, æ. 222. 8. Edw. 145.
Severn River, No. 43.
This is exactly the bird drawn by Edwards, t. 145. The specimen sent over is a female.
It differs much from our lesser crested Grebe. Br.
However, in both these works, it is looked on only as a variety, or different in sex. Mr. Graham has the same opinion. It lives on fish, frequenting the lakes near the sea coast. It lays its eggs in water, and cannot rise off dry land. It is seen about the beginning of June, but migrates southward in autumn. It is called Seksep, by the natives. Its eyes are small, the irides red; it weighs one pound, and measures one foot in length, and one third more in breadth.

24. Sterna. 58. Hirundo (Variety); 227. 2. Tern. J The greater Tern. Br. Zool. Faun. Am. Sept. (The number belonging to this bird is lost; perhaps it is No. 17, from Churchill River, called A. fort...
"A fort of Gull, called Egg-breakers, by "the natives.""

The feet are black; the tail is shorter and much less forked than that described and drawn in the Br. Zool. The outermost tail-feather likewise wants the black, which that in the British Zoology has. In other respects it is the same.
DESCRIPTIO NES Avium Rariorum e Sinu Hudsonis.

I. FALCO SACER.

Falco, cerâ pedibusque coeruleis, corpore, remigibus recticibusque fuscis, fasciis pallidis; capite, pectore & abdomine albis, maculis longitudinalibus fuscis.

Habitat ad sinum Hudsonis et in reliqua America Septentrionali; victitat Lagopodibus & Tetraonum speciebus.

Descr. Magnitudo Corvi.

Rostrum, cera, pedes coerulea; rostrum breve, curvum, coeruleo-atrium; mandibula utraque, basi pallide coerulea, apice nigrescente, utraque emarginata.

Caput tectum pennis albidis, maculis longitudinalibus, fuscis.

Oculi magni; irides flavae.

Gula alba, fusco-maculata.

Dorsum et tectrices alarum, plumis fuscis, ferrugineo-pallide marginatis, maculatis, maculis rachin non attingentibus.

Pectus, venter, crissum, tectrices alarum inferiores, & femora alba, maculis longitudinalibus nigro-fuscis.

Remiges fusco-nigri, viginti duo; primores apicibus margine albis, maculis fero-rugineo.
rugineo-pallidis, intra majoribus, transverolis, extra minoribus, rotundatis.

Rectrices duodecim, supra fuscae, fasciis circiter duodecim & apice albidis; infra cinereae, fasciis albidis.

2. STRIX NEBULOSA.

STRIX capite laevi, corpore fusco, albedo undulatim striato, remige sexto longiore, apice nigricante. Habitat circa Sinum Hudsonis, victitatus Leporibus, Lagopodibus, Muribusque.

Descr. Rostrum fusco-flavum, mandibula superiore superius magis flava.

Oculi magni, iridibus flavis.

Caput facie cinerea, e pennis fusco et pallide cinereo alternatim striatis. Pone hasce pennas collum versus est ordo plumularum fuscarum ad utramque genam, semicirculum nigrum efficiens.

Occiput, cervix, et collum fusca, pennis, marginibus albo-maculatis.

Pectus albidum, maculis longitudinalibus transversisque fusciis.

Abdomen album, superius uti pectus maculis longitudinalibus, sed inferiorius striis transversis notatum.

Dorsum totum et rectrices alae, caudaeque conferuntim ex fusco & albedo undulato-striatae.

Alae fuscae; remiges primores fusci, griseo transversim fasciati, fasciis latis nebulosis. Remex sextus, reliquis longior, apice magis
magis nigricans; primus vero reliquis primoribus brevior. Remiges reliqui pallidiores, obscurius fasciati.

Cauda rotundata, rectricibus duodecim: duæ intermediae paullo longiores, totæ cinerascente albido fuscoque undulatim striatae, lineis duplicatis fuscis transversis pluribus. Rectrices reliquæ fuscae albidò substriatae.

Pedes teci pennis albidis fusco-striatis.

Magnitudo fere Strigis Nycteæ, Linn.

Longitudo unciarum 16 pedis Anglicani.

Latitudo pedum quatuor.

Pondus librarum trium.

3. TETRAO PHASIANELLUS.

Linn. Ed. X. p. 160. n. 5.

TETRAO pedibus hirsutis, cauda cuneiformi, remigibus nigris, exterius albo-maculatis.

Habitat ad Sinum Hudsonis.

Descri. Magnitudo fere Tetraonis Tetricis. Linn.

Rostrum nigrum.

Oculorum irides avellaneæ.

Caput, collum & dorsum teftaceum, nigro transversim fasciata: macula albida inter rostrum et oculos: latera colli notata maculis rotundatis albidis.

Dorsum teftaceum, plumis omnibus late nigro-fasciatis.
Uropygium magis albido-cinereum, nigredine fimbriata secundum rachin plumarum.

Pectus & Venter albida, maculis cordatis fusco-teftaceis in ventre saturatioribus.

Alarum tectrices dilute teftaceo, nigro, alboque transversim fasiatae, maculis pluribus rotundis albis. Remiges prumores nigri, latere exteriore albo-maculari; secundarii fusci, apice & ad marginem exteriorem albo subfasciati: postremi vero teftaceo fasiati, apice tantum albi.

Rectrices breves, exteriore pallide fuscae, apice albae, duae intermediae reliquis longiores, teftaceo-macularae.

Pedes plumis albo-griseis vesti digitis pectinati.

Longitudo unciarum 16 pedis Anglicani. Latitudo pedum duorum.

4. Emberiza leucophrys *.

Emberiza remigibus restrictibusque fusciis, capite nigro, fascia verticis, superciliiisque niveis. Habitat in America Boreali ad Sinum Hudsonis.

Caput fascia verticali lata candida, paululum ante rostrum definente; fascia atra.

* Διακός albus. Οφρυς supercilium.
[427]

Iata ad utrumque latus fasciæ albae. Superficiàlia alba, deíinentia in lineas, fasciam albam verticalem adtingentes; arcus dein atri, ex angulis oculorum, fere in occipite confluentes.

Collum cineraascens, in peclore dilutius.

Dorsium ferrugineo-fuscum, marginibus plumularum cinereis.

Pectus cinereum, abdomen dilutius, fere album.

Crvvium & plumulæ femora tegentes luteo- centia.

Urepygium cinereo-fuscum.

Cauda aequalis; rectrices duodecim fulcæ, marginibus paullo pallidioribus, subtus cinereæ.

Pades carni coloris, digito intermedio & ungue poftico reliquis longioribus.

Longitudo unciarum 7 pedis Anglicani.

Latitudo inter alas extensas 9 unciarum pedis Anglicani.

Cauda partem tertiam longitudinis totius aviculæ efficit.

J i i 2

A1e
Alae complicatae paululum ultra caudae exortum protenduntur.
Pondus drachmarum sex.

5. Fringilla Hudsonias.

Fringilla fusco-cinerafuscens, rostro albido, pectorore inferiore, abdomen, rectricibusque quattuor extremis albis.
Habitat in America Boreali.

Descri. Magnitudo circiter fringillae carduelis.
Rostrum albidum, rubedine aliquam imbutum.
Oculi parvi, coerulei.
Corpus totum cinereo-nigricans, s. potius fuliginosum.
Pennis inferius & abdomen alba.
Remiges fusci, cinereo-marginati: alae complicatae mediam fere caudam adtingunt.
Rectrices fuscae, extimae utrinque duae totae albae, tertia fusca, macula oblonga alba, ad latus interius, prope rachin, apicem attingens; reliquae totae fuscae.
Pondus femunciae.
Longitudo unciarum 6½ pedis Anglicani.
Latitudo unciarum novem.

Muscicapa cinereo-virens, dorso nigro striato, subtus flavescenti-alba, gula lateribusque pectoris fusco maculatis.
Habitat
Habitat ad Sinum Hudsonis.

Quum mas à sœmina multum differat, utique congruum est, utrumque sexum separatim describere.

Descri. Mas.

Rostrum trigonum, mandibul superior paululum longiore, ante apicem leviter emarginata, nigra; inferioris basi flavescente.

Nares subrotundae.

Vibrissæ nigrae.

Caput supra totum atrum ad oculos usque. *Gena* à rostro in occiput totæ albae; occiput albo & nigro variegatum.

Gula flavescenti-alba maculis fuscis.

Pectus albidum, lateribus, sive versus occiput maculis nigris variegatum.

Dorsum cinereo-virens, striis sive maculis longitudinalibus nigris latioribus, é pl humili nigris, margine virentibus.

Abdomen album.

Uropygium cinereum, nigro-maculatum.

Alle fuscae; remiges primores pallido margi- nati, secundarii apice tenuissimo albo; duæ ultimæ margine exterioire albo; *rectrices* fuscae, majores flavescenti albo, minores candido in apice maculatae, unde fasciae albae binae in alis.

Cauda fusca; *rectrix utrinque prima f. extima*, latere interiore macula magna alba, marginem interiorem attingente; proxima f. secunda macula oblonga minore alba, etiam marginem interiorem attingente;
ingente; utrinque tertia, latere interniore versus apicem albo-marginata. Pedes lutei; unguæ breves, pallide fusci. Magnitudo circiter Pari atricapilli; Linn. Longitudo 5 unciarum. Latitudo 7 unciarum pedis Anglicani.

Fœmina.
Rostrum, alæ, cauda, abdomen, uropygium, pedes & mensurae ut in mare. Caput flavo-virens, striis brevibus tenuibusque longitudinalibus nigris; linea flavissima à basi rostri inciapiens super oculos duce; palpebræ flavæ. Gula, genæ & pectus albido-flava; maculae sarræ oblongiæculæ fusæ, ab utroque oris angulo utque in pectoris latera.

Dorsum, ut in mare, sed viridius, & striæ nigrae minores.

7. Parus Hudsonicus.

Parus capite fusco-rubescens, dorso cinereo, jugulo atro, fascia subocularis, pectoreque albis, hypochondriis rufis.

Habitat at Sinum Hudsonis.

Descr. Rostrum subulatum, integerrimum, atrum, basi è regione narium tectum fasciculis fetarum ferruginearum, lineas 4 (uncia pedis Anglicani) longum. Caput fusco-ferrugineum, fascia subjacentis alba; gula attra, nigredine extensa subjacenti fascia alba.

Dorsum
Dorfum cinereo-virens, è plumis longioribus, fuscis, apice tantum cinereo-virenis, f. olivaceis.

Pectus & Abdomen alba, sed plumæ omnes bafi nigræ, apice tantum albae.

Latera abdominis & lumbi ferruginei.

Alæ fuscae, remigine margine omni cinereo.

Cauda fusca, rotundata, rectricibus 12, margine cinereis.

Uropygium testum plumulis aliquot nigris, apice albido-rufis.

Pedes nigri; digitus posticus cum ungue anticorum digitorum medio, duplo longo.

Longitudo unciarum 5\frac{1}{2} pedis Anglicani.

Latitudo unciarum 7.

Cauda uncias 2\frac{1}{2} longa.

8. Scolopax borealis.

Scolopax rostro arcuato, pedibusque nigris, corporis fulco, griseo-maculato, subitus ochroleuco.

Habitat in Sinus Hudsonis inundatis, & pratis humidis, viictans vermis & insectis: mensfe Aprili vel initio Maii primum vis est, circa Castellum Albany, inde in terras magis arcticas migrat, ibique nidificat; redit ad idem castellum mensfe Augusto; regiones Australiores petit circa finem Septembris.

Affinis scolopace arquata Linn. sed differt corporis triplo minore, rostro ratione corporis breviore,
breviore, colore in dorso faturate fusco, in abdomen ochroleuco.

Descri. Caput pallidum, lineolis confertis longitudinalibus fuscis: sinciput faturate fuscum, pallido maculatum.

Roslrum nigricans, arcuatum, longitudine duarum unciarum pedis Anglicani, mandibula inferiori rufa.

Collum, pectus, abdomen & crissum ochroleuca; pectore colloque lineolis longitudinalibus fuscis confertioribus, abdomine & crisso fere nullis, vel tenuibus notatis.

Femora semi-tecta plumulis ochroleucis, fusco maculatis.

Latera abdominis sub alis praestim, rufa, pennis transversis fusco fasciatis.

Dorsum totum faturate fuscum, pennis margine albido griseis.

Alae fuscae; remiges primores immaculati, primores rachi tota alba; reliqui, f. secundarior pallide griseo-marginati. Tectrices late griseo-marginati. Tectrices inferiores alae, ferrugineae fusco transversis fasciatis. Alae complicatae fere medium caudam attingunt.

Uropygium fuscum, marginibus maculisque pennarum albidis.

Cauda brevis, fusca, rectricibus albido transversim fasciatis

Pedes nigri, f. coerulecentes.

Longitudo unciarum 13⅓.

Latitudo circiter unciarum 21.
9. *Anas nivalis.*

Anas, rostro cylindrico, corpore albo, remigibus primoribus nigris.

Habitat in America Boreali, per Sinum Hudsonis migrans.

Descr. Corpus totum album, magnitudine anseris domestici nostratis.

Rostrum luteum, mandibulis subjacentibus.

Oculi iride rubra.

Remiges decem primores nigri, scapis albis: tectrices infima cinereae, scapis nigro: pennae duae alulae, itidem cinereae, scapis nigris.

Pedes rubri.

Longitudo pedum duorum & unciarum octo.

Latitudo pedum 3½.

Pondus librarum 5 vel 6.
XXX. Geometrical Solutions of three celebrated Astronomical Problems, by the late Dr. Henry Pemberton, F. R. S. Communicated by Matthew Raper, Esq; F. R. S.

Lemma.

Read June 4, 1772. To form a triangle with two given sides, that the rectangle under the sine of the angle contained by the two given sides, and the tangent of the angle opposite to the lesser of the given sides, shall be the greatest that can be.

Let [Tab. XII. Fig. i.] the two given sides be equal to AB and AC; round the center A, with the interval AC, describe the circle CDE, and produce BA to E; take BF a mean proportional between BE and BC, and erect the perpendicular FG, and complete the triangle AGB.

Here the sine of BAG is to the radius, as FG to AG; and the tangent of AGB to the radius, as FG to FB: therefore, the rectangle under the sine of BAG and the tangent of AGB is to the square of the
the radius, as the square of FG, or the rectangle EFC, to the rectangle under AG (or AC) and FB. But, EB being to BF as BF to BC, by conversion, EB is to EF as BF to FC, and also, by taking the difference of the antecedents and of the consequents, EF is to twice AF as BF to FC; and twice AFB is equal to EFC.

Now, let the triangle BAH be formed, where the angle BAH is greater than BAG. Here, the perpendicular HI being drawn, the rectangle under the side of BAH and the tangent of A BH will be to the square of the radius, as the rectangle EIC to the rectangle under AC, IB. But IF is to FB as 2 AFI to 2 AFB, or EFC; and 2 AFI is greater than AF² — AI²; also AF² — AI² together with EFC, is equal to EIC; therefore, by composition, the ratio of IB to BF is greater than that of EIC to EFC; and the ratio of AC x IB to AC x FB greater than that of EIC to EFC: also, by permutation, the ratio of AC x IB to EIC greater than the ratio of AC x FB to EFC. But the first of these ratios is the same with that of the square of the radius to the rectangle under the side of BAH and the tangent of A BH; and the latter is the same with that of the square of the radius to the rectangle under the side of BAG and the tangent of ABG; therefore, the latter of these two rectangles is greater than the other.

Again, let the triangle BAK be formed, with the angle BAK less than BAG, and the perpendicular KL be drawn. Then the rectangle under the side of BAK and the tangent of ABK is to the square of the radius, as the square of KL to the rectangle under $K \times 2AC$.
AC, BL. Here, FL being to FB as 2AFL to 2AFB or EFC, and 2AFL less than AL — AF, by conversion, the ratio of LB to FB will be greater than the ratio of ELC to EFC; therefore, as before, the rectangle under the sine of BAG and the tangent of ABG is greater than that under the sine of BAK and the tangent of ABK.

Corollary 1.

BF is equal to the tangent of the circle from the point B; therefore, BF is the tangent, and AB the secant, to the radius AC, of the angle, whose cosine is to the radius as AC to AB. Therefore, AF is the tangent, to the same radius, of half the complement of that angle; and AF is also the cosine of the angle BAG to this radius.

Corol. 2.

The sine of the angle composed of the complement of AGB, and twice the complement of ABG, is equal to three times the sine of the complement of AGB. Let fall the perpendicular AH (Fig. 2.), cutting the circle in I; continue GF to K, and draw AK. Then BF = EBC = GBL. Therefore, GB : BF :: BF : BL, and the triangles GBF, FBL are similar. Consequently FL is perpendicular to GB, and parallel to AH; whence GH being equal to HL, GM is equal to MF, and MK equal to three times GM.

Now, the arc IK = 2IC + GI; and the angle IAK = 2IAC + GAI; also GM is to MK as the
the fine of the arc GI to the fine of the arc IK, that is, as the fine of the angle GAI to the fine of the angle IAK. Therefore, the fine of the angle IAK (=2IAC + GAI) is equal to three times the fine of the angle GAI; but GAI is the complement of AGB, and IAC the complement of ABG.

Corol. 3.

If (Fig. 3.) any line BN be drawn to divide the angle ABG, and AN be joined, also AO be drawn perpendicular to BN, and continued to the circle in P, the fine of the angle composed of NAP and 2PAC will be less than three times the fine of the angle NAP. Draw NQR perpendicular to AB, cutting AP in S; join AR, and draw QT perpendicular to BN, and parallel to AO; then BQ = NBT. But BQ is greater than the rectangle EBC, that is, greater than the rectangle NBV, under the two segments of the line BN drawn from B, to cut the circle in N and V: therefore, TB is greater than VB, and NO greater than OT. Consequently NS is greater than SQ. Hence RS is less than three times NS; and therefore, the fine of the angle PAR (=NAP + 2PAC) is less than three times the fine of NAP.
Problem I.
To find in the ecliptic the point of longest ascension.

Analysis.

Let (Fig. 4.) ABC be the equator, ADC the ecliptic, BD the situation of the horizon, when D is the point of longest ascension. Let EFG be another situation of the horizon. Then the ratio of the sine of EB to the sine of FD is compounded of the ratio of the sine of BG to the sine of GD, and of the ratio of the sine of AE to the sine of AF; but the angles B and E being equal, the arcs EG, GB together make a semicircle; and, by the approach of EG towards GB, the ultimate magnitude of BG will be a quadrant, and the ultimate ratio of EB to FD will be compounded of the ratio of the radius to the sine of DG (that is, the cosine of BD) and of the ratio of the sine of AB to the sine of AD.

Draw the arc DH perpendicular to AB. Then, in the triangle BDH, the radius is to the cosine of BD, as the tangent of the angle BDH to the cotangent of HBD. Also, in the triangle BDA, the sine of AB is to the sine of AD as the sine of the angle BDA (or BDC) to the sine of ABD; therefore, the ultimate ratio of BE to DF is compounded of the ratio of the tangent of BDH to the cotangent of ABD, and of the ratio of the sine of BDC to the sine of ABD; which two ratios compound that of the rectangle under the tangent of BDH and the sine of BDC to the rectangle under the cotangent and the sine of the given angle ABD.

But
But, when D is the point of longest ascension, the ratio of BE to DF is the greatest that can be; therefore, then the ratio of the rectangle under the tangent of B D H and the sine of B D C to the given rectangle under the cotangent and sine of the given angle A B D must be the greatest that can be; and consequently, the rectangle under the tangent of B D H, and the sine of B D C, must be the greatest that can be.

In the triangle B D A, the sine of B D H is to the sine of H D A, as the cosine of A B D to the cosine of B A D. Now, in the preceding lemma, let the angle B A G of the triangle A G B be equal to the spherical angle B D C: then will the sum of the angles A B G, A G B be equal to the spherical angle B D A. And, if A G in the triangle A G B, be to A B as the cosine of the spherical angle D B A to the cosine of D A B; that is, as the sine of B D H to the sine of H D A, the angle A B G, in the triangle, will be equal to the spherical angle B D H; and the angle A G B, in the triangle, equal to the spherical angle H D A. Therefore, by the first corollary of the lemma, that the rectangle under the tangent of the spherical angle B D H and the sine of B D C be the greatest that can be, the cosine of B D C must be equal to the tangent of half the complement of the angle, whose cosine is to the radius, as A G to A B, in the triangle, or as the cosine of the spherical angle A B D to the cosine of the spherical angle B A D.

If I K be the situation of the horizon, when the solstitial point is ascending, in the quadrantal triangle A I K, the cosine of K I C is to the radius as the cosine of I K A (= D B A) to the cosine of I A K. Therefore,
Therefore, the cosine of BDC, when D is the point of longefl ascension, is equal to the tangent of half the complement of the angle, which the ecliptic makes with the horizon, when the solstitial point is ascending.

But, the sine of the angle composed of DAB, and twice ABD, must be less than three times the sine of the angle BAD. In the spherical triangle ABD, the angles BAD, ABD together exceed the external angle BDC. Therefore, in the third corollary of the lemma, let the angle BAN be equal to the sum of the spherical angles BAD, ABD: but here, AN is to AB as the cosine of the spherical angle ABD to the cosine of BAD; and AN is also to AB as the sine of ABN to the sine of ANB, that is, as the cosine of BAP to the cosine of NAP; consequently, since the angle BAN is equal to the sum of the spherical angles BAD, ABD, the angle NAP is equal to the spherical angle BAD, and the angle BAP equal to the spherical angle ABD; but the sine of the angle composed of NAP and twice PAB is less than three times the sine of NAP; therefore, the sine of the angle composed of the spherical angle BAD and 2 ABD will be less than three times the sine of the angle BAD; otherwise no such triangle DAB, as is here required, can take place, but the point A will be the point of longest ascension.

If the sine of the angle A be greater than one third of the radius, the point A can never be the point of longest ascension; but when the sine of this angle is less, the angle compounded of BAD and twice ABD, may be greater or less than a quadrant; and
and therefore, the magnitude of the angle $\angle ABD$, that A be the point of longest ascension, is confined within two limits, of which the double of one added to the angle A, as much exceeds a quadrant, as the double of the other added to that angle falls short of it; therefore, double the sum of those two angles, together with twice A, makes a semicircle; and the single sum of those two angles added to A makes a quadrant.

Problem II.

To find when the arc of the ecliptic differs most from its oblique ascension.

Analysis.

If (Fig. 5.) BD be the situation of the horizon, when CD differs most from CB, as before, the ultimate ratio of BE to DF will be compounded of the ratio of the radius to the fine of DG (or the cofine of DB) and of the ratio of the fine of CB to the fine of CD: but, when CD differs most from CB, BE and DF are ultimately equal; therefore, then the cofine of BD is to the radius as the fine of CB to the fine of CD.

Draw the arc CHI of a great circle, that DH be equal to DB; then, BH being double BD, half the fine of BH is to the fine of BD or DH, as the cofine of BD to the radius; therefore, half the fine of BH is to the fine of DH as the fine of CB to the fine of CD; but the fine of the angle BCH is to the fine of BH as the fine of the angle CHB to the
fine of CB; whence, by equality, half the fine of BCH is to the fine of DH as the fine of CHB to the fine of CD: but as the fine of CHB to the fine of CD, so, in the triangle CHD, is the fine of DCH to the fine of HD: consequently, the fine of DCH is equal to half the fine of BCH. Hence, the difference of the angles BCH, DCH being given, those angles are given, and the arc CHI is given by position.

Moreover, in the triangle BCH, the base BH being biseected by the arc CD, the fine of the angle CHD is to the fine of the given angle CBD, as the fine of the given angle HCD to the fine of the given angle BCD; therefore, the angle CHB is given; in so much, that in the triangle CBH all the angles are given.

The sum of the fines of the angles BCH, DCH is to the difference of their fines, as the tangent of half the sum of those angles to the tangent of half their difference; therefore, the tangent of half the sum of BCH, DCH is three times the tangent of half BCD.

In (Fig. 6.) the isosceles triangle ABC, let the angle BAC be equal to the spherical angle BCD, and let AE be perpendicular to BC; also, CF being taken equal to CB, join AF: then EF is equal to three times EB; and as EF to EB, so is the tangent of the angle EAF to the tangent of EAB; but EAB is equal to half the spherical angle BCD: therefore, the angle EAF is equal to half the sum of the spherical angles BCD, BCH; and consequently, the angle CAF equal to the spherical angle DCH. Here, AF is to CF as the fine of the angle ACF to
to the fine of CAF; and CB is to AB as the fine of the angle BAC to the fine of ABC: therefore, CF being equal to CB, and the fine of ACF to the fine of ACB, by equality, AF is to AB as the fine of the angle BAC to the fine of CAF, that is, as the fine of the spherical angle BCD to the fine of the spherical angle DCH.

Let (Fig. 7.) the triangle AGB have the angle AGB equal to the spherical angle CBD, and the side AG equal to AF. Then, AG is to AB as the fine of the spherical angle BCD to the fine of the spherical angle DCH, that is, as the fine of the spherical angle CBH to the fine of the spherical angle CHB: but AG is to AB also as the fine of the angle AGB to the fine of AGB; therefore, the angle AGB being equal to the spherical angle CBH, the angle AGB is equal to the spherical angle CHB: and moreover, when the angle AGB is greater than AFB, that is, when the spherical angle CBH is greater than the complement of half BCD, the three angles AGB, AGB and BAC together exceed two right.

Hence, (Fig. 8.) towards the equinoctial point C, where the angle CBD is obtuse, a situation of the horizon, as BD, may always be found, wherein CD more exceeds CB than in any other situation: and when the acute angle DBA is greater than the complement of half BCD, another situation of the horizon, as KLM, may be found, toward the other equinoctial point A, wherein the arc of the ecliptic CK will be less than the arc of the equator, and their difference be greater than in any other situation. But, if the angle DBA be not greater than the complement
plement of half BCD, the arc of the ecliptic, between C and the horizon, will never be less than the arc of the equator, between the same point C and the horizon.

In the two situations of the horizon, the angles CHB and KMA are equal.

SCHOLIUM 1.

To find the point in the ecliptic, where the arc of the ecliptic most exceeds the right ascension, is a known problem: that point is, where the cosine of the declination is a mean proportional between the radius and the cosine of the greatest declination.

In the preceding figure, supposing the angle CBD to be right, then, because when CD most exceeds CB, the cosine of BD is to the radius as the sine of CB to the sine of CD, and, in the triangle CDB, the sine of CB is to the sine of CD as the sine of the angle CDB to the radius, also the sine of CDB is to the radius as the cosine of BCD to the cosine of BD; therefore, the cosine of BD is to the radius as the cosine of the angle BCD to the cosine of the same BD, and the cosine of BD is a mean proportional between the radius and the cosine of BCD.

SCHOLIUM 2.

In any given declination of the Sun, to find when the azimuth most exceeds the angle which measures the time from noon, is a problem analogous to the preceding.
PROBLEM III.

The tropic found, by Dr. Halley's method *, without any consideraion of the parabola.

The observations are supposed to give the proportions between the differences of the fines of three declinations of the Sun near the tropic; but the fine of the Sun's place is in a given proportion to the fine of the declination; therefore, the same observations give equally the proportion between the differences of the fines of the Sun's place, in each observation.

Now (Fig. 9.), let ACE be the ecliptic, AE its diameter between γ and α, and its center F; let B, C, D be three places of the Sun; BG, CI, DH the fines of those places respectively. Draw CK, BL parallel to AE, which may meet HD, in N and M. Then, by the observations, the ratio of DM to DN is given. Therefore, if BD be drawn to meet KL in O, the ratio of BD to OD is given; and the ratio of BD to DC is also given, they being the chords of the given angles BFD, CFD: hence the ratio of CD to DO, in the triangle CDO, is given; and consequently, the angle COD will be given: which angle is the distance of the tropic from the middle point of the ecliptic between B and D: for, FPR being perpendicular to OC, and FQS perpendicular to DB, the angle QFP is equal to QOP, the points O, P, Q, F, being in a circle.

* Vide Philosophical Transactions, No 215.
THE CALCULATION.

\[
\begin{align*}
\text{DN} : \text{DM} &:: \text{rad.} : t. \leq \chi \\
\text{f.} \frac{1}{2} \text{BFD} : \text{f.} \frac{1}{2} \text{CFD} &:: \text{rad.} : t. \leq \chi \approx 45^\circ :: \text{t.} \frac{1}{4} \text{BFC} : \text{t.} \frac{\text{COD} \approx \text{DCO}}{2}
\end{align*}
\]

If \(\chi > 45^\circ \), \(\angle \text{COD} > \text{DCO} \)

And

if \(\chi \leq 45^\circ \), \(\angle \text{COD} < \text{DCO} \).

If the intervals between the observations are so small, that the fuses differ not much from the arches, the arches BC, CD may be counted in time, and the calculation may be abbreviated thus:

\[
\begin{align*}
\text{DM} : \text{DN} &:: \text{arc.} \text{BD} : \text{Z} \quad \text{(for DO)} \\
\text{DC} + \text{Z} : 2 \text{DC} &:: \frac{1}{2} \text{BC} : \text{SR.}
\end{align*}
\]

Or,

\[
\begin{align*}
\text{DM} \times \text{DC} + \text{DN} \times \text{BD} &:: \text{DM} \times \text{DC} :: \frac{1}{2} \text{BC} : \text{SR.}
\end{align*}
\]

XXXI. On
XXXI. On the Digestion of the Stomach after Death, by John Hunter, F. R. S. and Surgeon to St. George's Hospital.

Received May 18, 1772.

A N accurate knowledge of the appearances in animal bodies that die of a violent death, that is, in perfect health, or in a sound state, ought to be considered as a necessary foundation for judging of the state of the body in those that are diseased.

But as an animal body undergoes changes after death, or when dead, it has never been sufficiently considered what those changes are; and till this be done, it is impossible we should judge accurately of the appearances in dead bodies. The diseases which the living body undergoes (mortification excepted) are always connected with the living principle, and are not in the least similar to what may be called diseases or changes in the dead body: without this knowledge, our judgment of the appearances in dead bodies must often be very imperfect, or very erroneous; we may see appearances which are natural, and may suppose them to have arisen from disease; we may see diseased parts, and suppose them in a natural state; and we may suppose a circumstance to have existed before.
fore death, which was really a consequence of it; or we may imagine it to be a natural change after death, when it was truly a disease of the living body. It is easy to see therefore, how a man in this state of ignorance must blunder, when he comes to connect the appearances in a dead body with the symptoms that were observed in life; and indeed all the usefulness of opening dead bodies depends upon the judgement and sagacity with which this sort of comparison is made.

There is a case of a mixed nature, which cannot be reckoned a process of the living body, nor of the dead; it participates of both, inasmuch as its cause arises from the living, yet cannot take effect till after death.

This shall be the object of the present paper; and, to render the subject more intelligible, it will be necessary to give some general ideas concerning the cause and effects.

An animal substance, when joined with the living principle, cannot undergo any change in its properties but as an animal; this principle always acting and preserving the substance, which it inhabits, from dissolution, and from being changed according to the natural changes, which other substances, applied to it, undergo.

There are a great many powers in nature, which the living principle does not enable the animal matter, with which it is combined, to resist, viz. the mechanical and most of the stronger chemical solvents. It renders it however capable of resisting the powers of fermentation, digestion, and perhaps several others, which are well known to act
act on this same matter, when deprived of the living principle, and entirely to decompose it. The number of powers, which thus act differently on the living and dead animal substance, is not ascertained: we shall take notice of two, which can only affect this substance when deprived of the living principle; which are, putrefaction and digestion. Putrefaction is an effect which arises spontaneously; digestion is an effect of another principle acting upon it, and shall here be considered a little more particularly.

Animals, or parts of animals, possessed of the living principle, when taken into the stomach, are not the least affected by the powers of that viscus, so long as the animal principle remains; thence it is that we find animals of various kinds living in the stomach, or even hatched and bred there: but the moment that any of those lose the living principle, they become subject to the digestive powers of the stomach. If it were possible for a man’s hand, for example, to be introduced into the stomach of a living animal, and kept there for some considerable time, it would be found, that the dissolvent powers of the stomach could have no effect upon it; but if the same hand were separated from the body, and introduced into the same stomach, we should then find that the stomach would immediately act upon it.

Indeed, if this were not the case, we should find that the stomach itself ought to have been made of indissoluble materials; for, if the living principle was not capable of preserving animal
substances from undergoing that process, the stomach itself would be digested.

But we find on the contrary, that the stomach, which at one instant, that is, while possessed of the living principle, was capable of resisting the digestive powers which it contained, the next moment, viz. when deprived of the living principle, is itself capable of being digested, either by the digestive powers of other stomachs, or by the remains of that power which it had of digesting other things.

From these observations, we are led to account for an appearance which we find often in the stomachs of dead bodies; and at the same time they throw a considerable light upon the nature of digestion. The appearance which has been hinted at, is a dissolution of the stomach at its great extremity; in consequence of which, there is frequently a considerable aperture made in that viscus. The edges of this opening appear to be half dissolved, very much like that kind of dissolution which fleshly parts undergo when half digested in a living stomach, or when dissolved by a caustic alkali, viz. pulpy, tender, and ragged.

In these cases the contents of the stomach are generally found loose in the cavity of the abdomen, about the spleen and diaphragm. In many subjects this digestive power extends much further than through the stomach. I have often found, that after it had dissolved the stomach at the usual place, the contents of the stomach had come into contact with the spleen and diaphragm,
had partly dissolved the adjacent side of the spleen, and had dissolved the diaphragm quite through; so that the contents of the stomach were found in the cavity of the thorax, and had even affected the lungs in a small degree.

There are very few dead bodies, in which the stomach is not, at its great end, in some degree digested; and one who is acquainted with dissections, can easily trace the gradations from the smallest to the greatest.

To be sensible of this effect, nothing more is necessary, than to compare the inner surface of the great end of the stomach, with any other part of the inner surface; what is found, will appear soft, spongy, and granulated, and without distinct blood vessels, opaque and thick; while the other will appear smooth, thin, and more transparent; and the vessels will be seen ramifying in its substance, and upon squeezing the blood which they contain from the larger branches to the smaller, it will be found to pass out at the digested ends of the vessels, and appear like drops on the inner surface.

These appearances I had often seen, and I do suppose that they had been seen by others; but I was at a loss to account for them; at first, I supposed them to have been produced during life, and was therefore disposed to look upon them as the cause of death; but I never found that they had any connection with the symptoms: and I was still more at a loss to account for these appearances when I found that they were most frequent in those who died of violent deaths, which made

M m m z
me suspect that the true cause was not even imagined.

At this time I was making many experiments upon digestion, on different animals, all of which were killed, at different times, after being fed with different kinds of food; some of them were not opened immediately after death, and in some of them I found the appearances above described in the stomach. For, pursuing the enquiry about digestion, I got the stomachs of a vast variety of fish, which all die of violent deaths, and all may be said to die in perfect health, and with their stomach commonly full; in these animals we see the progress of digestion most distinctly; for as they swallow their food whole, that is, without mastication, and swallow fish that are much larger than

* The first time that I had occasion to observe this appearance in such as died of violence and suddenly, and in whom therefore I could not easily suppose it to be the effect of disease in the living body, was in a man who had his skull fractured and was killed outright by one blow of a poker. Just before this accident, he had been in perfect health, and had taken a hearty supper of cold meat, cheese, bread, and ale. Upon opening the abdomen, I found that the stomach, though it still contained a good deal, was dissolved at its great end, and a considerable part of the contents lay loose in the general cavity of the belly. This appearance puzzled me very much. The second time was at St. George's Hospital, in a man who died a few hours after receiving a blow on his head, which fractured his skull likewise. From those two cases, among other conjectures about so strange an appearance, I began to suspect that it might be peculiar to cases of fractured skulls; and therefore, whenever I had an opportunity, I examined the stomach in every person who died of that accident: but I found many of them which had not this appearance. Afterwards I met with it in a soldier who had been hanged.
the digesting part of the stomach can contain (the shape of the fish swallowed being very favourable for this enquiry,) we find in many instances that the part of the swallowed fish which is lodged in the digesting part of the stomach is more or less dissolved, while that part which remains in the stomach is perfectly found.

And in many of these I found, that this digesting part of the stomach was itself reduced to the same dissolved state as the digested part of the food.

Being employed upon this subject, and therefore enabled to account more readily for appearances which had any connection with it, and observing that the half-dissolved parts of the stomach, &c. were similar to the half-digested food, it immediately struck me that it was from the process of digestion going on after death, that the stomach, being dead, was no longer capable of resisting the powers of that menstruum, which itself had formed for the digestion of its contents; with this idea, I set about making experiments to produce these appearances at pleasure, which would have taught us how long the animal ought to live after feeding, and how long it should remain after death before it is opened; and above all, to find out the method of producing the greatest digestive power in the living stomach: but this pursuit led me into an unbounded field.

These appearances throw considerable light on the principles of digestion; they shew that it is not mechanical power, nor contractions of the stomach, nor heat, but something secreted in the coats of the stomach,
f stomach, which is thrown into its cavity, and there animalifes the food *, or assimilates it to the nature of the blood. The power of this juice is confined or limited to certain substances, especially of the vegetable and animal kingdoms; and although this menstruum is capable of acting independently of the stomach, yet it is obliged to that viscus for its continuance.

* In all the animals, whether carnivorous or not, upon which I made observations or experiments to discover whether or not there was an acid in the stomach, (and I tried this in a great variety,) I constantly found that there was an acid, but not a strong one, in the juices contained in that viscus in a natural state.
XXXII. Experiments and Observations on the Waters of Buxton and Matlock, in Derbyshire, by Thomas Percival, of Manchester, M. D. and F. R. S.

Read June 25, 1772.

The water of Saint Ann’s-well is found, by analysis, to contain calcareous earth, fossil alkali, and sea salts; but in very small proportions: for a gallon of the water, when evaporated, yields only twenty three, or twenty four grains of sediment. It strikes a light green colour with syrup of violets, suffers no change from an infusion of galls, from the fixed vegetable alkali, or from the mineral acids; becomes milky with the volatile alkali, and with Saccharum Saturni; and lets fall a precipitate on the addition of a few drops of a solution of silver, in the nitrous acid. The specific gravity of this water is precisely equal to that of rain water, when their temperatures are the same; but it weighs four grains in a pint lighter, when first taken from the spring. The heat of the bath is about 82 degrees of Fahrenheit’s thermometer; that of Saint Ann’s well, as it is a smaller body of water, and exposed to the open air, is somewhat less. The water is transparent, sparkling, and highly grateful to the palate.

* I am indebted to the information of the worthy physician who attends at Buxton, for some of these facts.
In October 1769, I passed a few days at Buxton; and during my stay there amused myself with the following experiments on the effects of the water of Saint Ann's well, on my pulse.

Experiment I.

October 12, eight o'clock in the morning. The day cold and moist, my pulse beat 84 strokes in a minute; I drank at the well, the third of a pint of water, and, using every necessary precaution, examined my pulse at certain intervals of time; in five minutes, pulse 80; in ten minutes pulse 80, fuller and harder; in twenty minutes pulse 85; in half an hour pulse 90.

Experiment II.

Eleven o'clock in the forenoon, two hours after breakfast, the air warm and serene, pulse 90; I repeated the draught of water. In seven minutes pulse 109; in fifteen minutes pulse 103; in thirty minutes pulse 100, head-ach; in an hour and a half pulse 95, head-ach abated.

Experiment III.

October 13, eight in the morning; the day cold, pulse 92; I drank the quantity of water above-mentioned; in five minutes pulse 86; in fifteen minutes pulse 86, full and hard; in twenty minutes pulse 100; in half an hour pulse 92.

From the first and third experiments, it appears that the coldness of the morning counteracted for a time, the effects of the Buxton water; and reduced the
the vibrations of my pulse from 84 to 80, and from 92 to 86. But the stimulus of the water soon became superior to the sedative powers of the cold to which I was exposed; for within the space of half an hour my pulse rose to 90 in the first, and to 100 strokes in the second trial. At eleven o'clock before noon, when the air was warm and serene, the water in a much shorter time excited its force, increasing the velocity of my pulse from 90, to 109 vibrations in a minute. These experiments evince the heating quality of Buxton water, and suggest to us the precautions to be observed in the use of it. Small quantities should only be drunk at once, and frequently repeated; the belly should be kept soluble with lenitive Electuary, or any other mild purgative and at the beginning of the course, the patient may be directed to suffer the water to remain a few seconds in the glass, before he swallows it. For this celebrated spring abounds with a mineral spirit, or mephitic air, in which its stimulus, and indeed its efficacy resides, and which is quickly diffipated by exposure to the air.

The honourable and ingenious Mr. Cavendish has shewn by his Experiments on Rathbone Place water, Ph. Transactions, vol. LVII, that calcareous earths may be rendered soluble in water, by furnishing them with more than their natural property of fixed air. And it has lately been discovered that iron also may be suspended by this principle, in the same menstruum *. It appeared therefore highly probable to me, that a chalybeate impregnation might with great facility

* Vid. Mr. Lane's experiments, Ph. Transactions, Vol. LIX.
be communicated to the Buxton water, when fresh drawn from the spring; a quality, which in many cases would add greatly to its medicinal efficacy. I suggested the trial to Mr. Buxton, a very worthy and sensible apothecary near the wells, who has lately at my request made the following experiment.

Experiment IV.

A quart bottle containing two drachms of iron filings, was filled by immersion, with the water of Saint Anne's well, corked and agitated briskly under the surface of the water: it was then suffered to remain in the well till the filings had subsided, when the water was carefully decanted into a half pint glass; to this were added three drops of the tincture of galls, which immediately occasioned a deep purple colour, and transparency was presently restored by a few drops of the acid of vitriol; evident proofs that a solution of the iron was effected in a few minutes. The water also without the tincture of galls had a chalybeate taste, and left an agreeable astringency on the palate.

By this experiment, it appears that a warm chalybeate abounding with a mineral spirit, and grateful to the taste, may with very little trouble be obtained. And this method of impregnating the Buxton water with iron, must increase its tonic powers, and in many cases improve its medicinal virtues. It is a common practice to join the use of a chalybeate spring in the neighbourhood of St. Anne's well, with that of the Buxton water: but, the superiority of the artificial mineral water must be apparent, if we consider its agreeable warmth, volatility, levity, and gratefulness to the palate.

Buxton.
Buxton bath is very frequently employed as a temperate cold bath. For as the heat of the water is about sixteen or eighteen degrees below that of the human body, a gentle shock is produced on the first immersion, the heart and arteries are made to contract more powerfully, and the whole system is braced and invigorated. But this salutary operation must be greatly diminished, often indeed more than counter-balanced, by the relaxing vapours which copiously exhale from the bath, to which the patients are exposed during the time of dressing and undressing. A separate room is indeed provided for the ladies; but the gentlemen have no other accommodations than what the vault affords in which the bath is contained, and are therefore liable to all the inconveniences arising from warmth and moisture. June 12, 1772, the mercury stood in the shade at 65, but in this vault quickly arose to 78 degrees.

Experiments on Matlock Water.

Experiment I.

A thermometer made by Dollond, and graduated according to Fahrenheit's scale, was exposed for a sufficient length of time, to the steam of the water, as it gushes from the rock, and also immersed in the basin that receives it. The mercury rose to 66 degrees.

Experiment II.

Six drops of Sp. Sal. Ammon. vol. were poured into a glass of the spring water, which contained about
about the sixth of a pint; a very slight cloudiness immediately ensued, but no precipitation was afterwards observable.

Experiment III.

Six drops of a solution of salt of tartar occasioned a cloudiness, just perceptible, in the same quantity of water; no precipitation ensued.

Experiment IV.

Six drops of a solution of saccharum saturni immediately produced a milkiness in the water, but no sensible precipitation.

Experiment V.

Six drops of a solution of silver in the nitrous acid instantly occasioned a milkiness in the water; and after standing an hour, a grey powder was observable at the bottom of the glass.

Experiment VI.

Ten drops of the infusion of galls neither produced any change of colour in the water at the time they were added, nor was the slightest purple hue perceptible two hours afterwards.

Experiment VII.

A piece of paper besmeared with syrup of violets was dipped into a glass full of water; no change of colour ensued.
Experiment VIII.

Another piece of paper, moistened in the same manner with the syrup, was placed over a glass of water, as soon as it was taken from the spring. The paper suffered no change of colour, although it remained an hour upon the glass.

Experiment IX.

My pulse beat 84 strokes in a minute, at the time when I drank a half pint glass of the Matlock water; in 20 minutes my pulse rose to 86; in half an hour after they sunk to 82, and continued to vibrate the same number of times for an hour, which was as long as I thought it was necessary to examine them.

Experiment X.

The mercury in the thermometer, when immersed in each of the baths, stood at 68; in the river Derwent, which flows through the valley of Matlock, at 52. These experiments were made in the month of June 1772, and the weather was warm.

Experiment XI.

A four ounce phial, after being accurately counterpoised in a very nice balance, was filled to the brim with distilled water, which weighed three ounces, four drachms, forty-five grains and a half. The same phial, exactly balanced as before, was then filled to the brim with Matlock water, of the same temperature.
perature with the distilled water, which weighed three ounces, four drachms, and forty-six grains.

Matlock water is grateful to the palate, and of an agreeable temperature, but exhibits no marks of any mineral spirit, either by its taste, sparkling appearance in the glass, or by the chemical test employed in experiment 8. The second and third experiments shew that it is very slightly impregnated with Selenites or other earthly salts; and of this its comparative levity affords also a further proof: for it weighs twenty-six grains in a pint lighter than the Manchester pump water*, and only four grains heavier than distilled water. The precipitation of a grey powder, by the adding of a solution of silver in aqua fortis to the water, renders it probable that a small portion of sea salt is contained in it. For the powder is found to consist of the particles of silver, combined with the muriatic acid, which is separated from the fossil alkali by the superior affinity the nitrous acid bears to it; and thus a double elective attraction takes place in this experiment.

This water is said to contain iron, but the assertion is at least rendered doubtful by the 6th experiment, which was made with the utmost accuracy; and I am inclined to think, that it is entirely without foundation. The spring is justly celebrated for its efficacy in hæmoptoeis; and hence it may have been too hastily concluded that it possesses some slight degree of stypticity, by means of a chalybeate impregnation.

* Vid. the author's treatise on the pump water of Manchester. Essays medical and experimental, p. 207. 2d edit.
The 9th experiment, which my short stay at Matlock would not allow me leisure to repeat, affords a presumption that the water is not possessed of any stimulating powers; for the small increase of quickness in my pulse, on drinking half a pint of it, may be ascribed more to the quantity received into the stomach, than to the heating quality of the water.

The Bristol and Matlock waters appear to resemble each other, both in their chemical and medicinal qualities. I have examined and compared them together by the test mentioned above, and so far as such trials may be be deemed conclusive, there seems to be no other than the following slight difference between them,

Bristol water becomes a little more milky on the addition of a solution of fixed alkali, and of Saccharum Saturni than that of Matlock; the former also weighs near a grain in a pint heavier than the latter. Is it not to be lamented therefore, that so little attention is paid to Matlock, even by the physicians who reside in the neighbourhood of it? In hectic cases, hæmoptoæs, the diabetes, and other disorders, in which the circulation of the blood is rapid and irregular, I should apprehend that Matlock water, on some accounts, claims the preference to that of Bristol; for it is less disposed to quicken the pulse, and may therefore be drunk in larger quantities.

But it must be acknowledged that the climate of Bristol is superior to that of Matlock, a circumstance of the highest importance to consumptive patients. Situated in a deep though delightful valley, and surrounded by very high mountains, the sun disappears...
at Matlock earlier in the evenings, the fogs are longer in dispersing, and it may be presumed that rain falls here more frequently and copiously than in other places. For at Catfsworth, which is encompassed also with hills, and is about ten miles distant, in 1764, 1765, 1767, and 1768, about 33 inches of rain fell at a medium each year.

The following table exhibits a comparative view of the different temperatures of Bath, Buxton, Bristol, and Matlock waters, measured by Fahrenheit's thermometer.

* B A T H.
 King's Bath Pump 112°
 Hot Bath Pump 114½
 Crofs Bath Pump 110

* B R I S T O L.
 Hot Well Pump 76

B U X T O N.
 Bath 82
 St. Ann's Well 81 X

M A T L O C K.
 Baths 68
 Spring 66

XXXIII. Some Account of a Body lately found in uncommon Preservation, under the Ruins of the Abbey, at St. Edmund's-Bury, Suffolk; with some Reflections upon the Subject: By Charles Collignon, M. D. F. R. S. and Professor of Anatomy at Cambridge.

Read June 25, In the month of February last, some workmen, digging among the ruins of the above abbey, discovered a leaden coffin, supposed, from some circumstances, to contain the remains of Thomas Beaufort, Duke of Exeter, uncle to King Henry the Fifth. As it certainly was buried before the dissolution of the abbey, it must have been there between two and three hundred years. It was found near the wall, on the left-hand side of the choir of the chapel of the blessed Virgin; not inclosed in a vault, but covered over with the common earth. Upon examining the appearance of the body, the following circumstances were remarkable, as communicated to me, by an ingenious surgeon, on the spot, Mr. Thomas Cullum.

"The body was inclosed in a leaden coffin, surrounding it very close, so that you might easily distinguish..."
guish the head and feet. The corpse was wrapped round with two or three large layers of cere-cloth, so exactly applied to the parts, that the piece, which covered the face, retained the exact impression of the eyes and nose. The dura mater was entire. The brain was of a dark ash colour, with some remaining appearance of the medullary part. The coats of the eye were still whole, and had not totally lost their glistening appearance. There was about half a pint of a bloody-black water in the thorax; and a mass that seemed to be part of the lungs. The pericardium and diaphragm were quite entire. The abdominal viscera had been taken out very clean, and the integuments and muscles stuck very close to the vertebrae of the back. This cavity looked fresher than that of the thorax. I cut into the psoas magnus, where there were evident marks of red muscular fibres. The other muscles had lost all their red colour, and were become of a dark brown. The tendons were still strong, and retained their natural appearance. The hands, which are preserved in spirits, retain the nails. There were some very small holes in the coffin, out of which had run some bloody water, of an offensive smell. All the principal blood-vessels must have been cut through, in taking out the abdominal viscera: and if no ligature was made upon the vessels, their contents would escape, particularly as afflicted by the pressure of the cere-cloth, which is of considerable weight, and, doubtless, put on hot. This fluid running out of the coffin, upon its being moved, might occasion the suspicion of the body being put in pickle.”

Thus
Thus far Mr. Cullum’s account, by which it appears, that the visceræ of the abdomen had been taken out, so that the greatest part of the blood, he observes, did probably flow out, during that operation, from the mouths of the divided vessels, and whose diameter is considerable. This would greatly reduce the quantity of the fluids. The holes in the coffin, if purposely made, would seem designed to let out extravasated or transfusing fluids; but are irreconcilable with the notion of the body being in pickle. If the holes were accidental, the notion of a pickle may still be allowed. Might not the cere-cloth, impregnated, perhaps, with gums or resins, and, from its taking so exact an impression, most probably laid on hot preclude the external air; and, if done immediately after the party’s death, obviate the deposition of eggs, or incapacitate them from ever hatching? The lead grasping close, would co-operate with the cere-cloth in the exclusion of air and insects.

We have undoubted accounts of bodies found very little changed, after long interment, where there was no appearance of any art having been used. And there is no doubt some constitutions are more prone to putrefaction after death than others; these circumstances may be dependant on the age, sex, and last disease; to which predisposing causes, thus attending persons to the grave, are to be added the soil and situation in which they are deposited. Could we be masters of all these particulars, in the few dead bodies hitherto discovered greatly free from the usual putrefaction, it would lead, perhaps, to the probable cause.
cause of the phenomenon, and point out a proper method of imitation. And till that is done, it is difficult to know how much merit is to be assigned to the art or mystery of embalming, and how much to the power of natural causes.
XXXIV. A Letter from Richard Pulteney,
M. D. F. R. S. to William Watson,
M. D. F. R. S. concerning the medicinal
Effects of a poisonous Plant exhibited instead
of the Water Parfneep.

DEAR SIR,

Read July 9, SOME circumstances having lately 1772. S come to my knowledge, relating to the effects of a poisonous plant, I thought them rather too remarkable not to merit further notice; and, I address them to you with the more propriety, as you have already laid before the publick some observations * concerning the deleterious qualities of the plant in question, which holds a distinguished place among the poisonous ones that are indigenous in Britain.

Mr. H——n, an attorney of this place, now upwards of forty, at the age of fifteen, began to be affected (after taking cold upon violent exercise, as he thinks) with what is usually called a scorbutick disorder; which shewed itself more particularly on the outsides of his arms, about the elbows, and on.

the outsides of his legs, from the knees to the ankles, as well as in blotches upon other parts of his body. It had the appearance of a dry branny scab or scurf, which every night fell off, more or less, in scales, as is usual in leprous cases. At times it pushed out more than usual, and thickened the integuments of the limbs considerably, after which the separation of scales would become very abundant.

For several years past he had been trying a variety of things commonly recommended in such cases, particularly the quack medicine known by the name of Maredant’s Drops, which he continued for near a twelvemonth, without finding the least sensible relief: also an electuary of Flos sulphuris and Cremor tartari, which he had persevered in for near three years, without finding any other alteration, than that of its preventing constiveness, to which he was habitually subject.

In the winter 1770, this disorder increased upon him very rapidly, without being able to assign any reason, from any accident that had happened to him, or from any irregularity of his own in point of regimen, in which he was always very exact. At this time, besides the farther spreading of the eruption itself, the integuments of the legs thickened very much, and the limbs swelled to such a degree, as to render him unable to walk. The quantity of branny scurf and scales thrown off, at this time, was very great; he says “handfuls might have been taken out of his bed every morning.”

In this unhappy situation, even loathsome to himself, it was recommended to him to take the juice of water parsnep, in the quantity of one common table-spoonful
spoonful every morning, fasting, mixed with two spoonfuls of white mountain wine.

Accordingly, about the middle of January 1771, he procured a half-pint phial of what was so called, by means of the person who had recommended it, and who had assured him that he had been greatly relieved, in a similar disorder, by it.

The first spoonful he took did not begin to give any great uneasiness for two hours, but after that time, his head began to be affected in a very extraordinary manner; a violent sickness soon succeeded, and violent vomiting; and, after he was put to bed, there came on cold sweats, and a very strong and long-continued rigor, so that the people about him thought him dying for some time; but, in a few hours, all these symptoms wore off.

Such, however, had been the inveteracy of his disorder, and so strong his desire to find relief, that he determined not to desist; and, after having omitted his medicine for one day, he repeated it, in nearly the same dose, and with similar effects as to sickness and vomiting, though the uncommon sensation in his head, and the succeeding rigor, were by no means so violent. He had resolution enough to continue this dose every other morning, for more than a fortnight, and then reduced it to three teaspoonfuls which was just the half of the first dose.

Before he had taken this juice one month, he was sensible of a very great change for the better; encouraged, therefore, by these appearances he persevered in its use until the middle of April, by which time his skin, though not quite cleared, yet had ceased to throw off any more scurf, was become
come soft, clean, and well conditioned, and, as he has repeatedly assured me, he got then into a much better conditioned state, then he had experienced for many years before.

From first to last, this juice never purged him; though he says, even in its reduced dose, it never failed to occasion a dizziness of the head, a nausea, and sickness, which were not infrequently succeeded by a vomiting, that always instantly relieved his head.

From the middle of April to the middle of June, he desisted from the use of the juice, but, in its stead, drank every morning for breakfast, the infusion of the leaves of the same plant, which, he says, is like common bohea tea. The infusion seldom occasioned nausea, or sickness, but always brought on a small degree of vertigo, and in a slight manner produced the effects of intoxication from liquor.

In June he went to Harrowgate, as he had designed in the summer before. Upon first drinking and bathing there, he thought himself worse; and his eruptions, having gradually increased during the two months that he stayed in that place, he was convinced that those waters were of no real service to him. On his coming home, he returned to the use of the infusion, and he assures me, that he again found, even by that weak preparation, a very speedy alteration for the better. From that time, he continued it ever since, until his stock of the herb was exhausted; his skin is now so very little affected, that he has but here and there, upon his arms and legs, a very small appearance of his disorder.

Upon questioning him relating to the sensible qualities of this medicine, he says again, that he
particularly remembers that it never once purged him; not even the first dose, which had so nearly poisoned him. He does not think that it increased the sensible perspiration, but is convinced that it was diuretic; and adds, that he thinks it occasioned, besides the increased flow of urine, a copious sediment in it, and which he believes was always wanting before.

This is the plain, narrative of the fact. He has assured me that no medicine or regimen, among the great variety that he has tried, ever had any sensible effect upon his disorder before; and that nothing but the very early and sensible relief he experienced from this juice, could have induced him to persevere in its use, under such uneasy feelings, as it never failed to produce. Indeed, he makes nothing of the lighter effects of the infusion, from which, however, he thinks, he has likewise reaped no small benefit.

This case, the nature and inveteracy of his disorder, being well known among his neighbours, was much talked of, and raised the curiosity of many people. When I first heard of it, and was informed of the smallness of the dose, and its virulent operation, I could scarce doubt that the juice of some other plant had been administered instead of that of the water parsnep, which we know to be a safe and harmless vegetable; medical writers having directed its juice to be drunk, even to the quantity of four ounces for a dose: and as I know, the *Oenanthe crocata*, hemlock dropwort, to be exceedingly plentiful in this country, so much, as to be more easily procured than the water parsnep itself; I thought it probable...
probable that that plant had been used in its stead. Upon getting a specimen, it appeared that this had been indeed the case; as also, upon farther enquiry, that it was the juice of the root only, and not of the leaves and stalks, that had been administered. I might here observe, that the expression from the root is not to be depended upon after the plant is advanced towards its flowering state, as the root then becomes light, spongy, and almost destitute of juice.

If you judge this case not improper to be laid before the Royal Society, you will do me the honour of presenting it. Mr. H——n himself is so much convinced of the efficacy of the medicine, that he is desirous of its being known to the world.

I do not enter into any reasoning on this occurrence; I relate it only as a fact, and desire it may have no more weight than every judicious physician knows is due to a single instance. How far it may be proper to give this juice a farther trial, I will not take upon me to determine; but must, as an encouragement to any who may choose to venture upon it, inform them, that it has not on all persons so much power in producing nausea and sickness, as in the case here before us. I am,

S I R,

with great esteem,

Your obliged humble servant,

Blandford,
March 12, 1772.

R. Pulteney.

P. S.
P. S. Mr H—— is desirous that it should be known, that he "tried very fruitlessly, among other methods, the drinking of tar-water and sea-water, of each of which, he says, he did not drink less than an hog's head."
XXXV. April 21, 1772. Experiments on two Dipping-Needles, which Dipping-Needles were made agreeable to a Plan of the Reverend Mr. Mitchell, F. R. S. Rector of Thornhill in Yorkshire, and executed for the Board of Longitude, by Mr. Edward Nairne, of Cornhill, London.

Read July 9, 1772. The magnetic needles were twelve inches long, and their axes (the ends of which were of gold alloyed with copper) rested on friction-wheels of four inches diameter, each end on two friction-wheels, which wheels were balanced with great care. The ends of the axes of the friction-wheels were likewise of gold alloyed with copper, and moved in small holes made in bell-metal; and opposite the ends of the axes of the needles, and the friction-wheels, were flat agates, finely polished. Each magnetic needle vibrated in a circle of bell-metal, divided into degrees and half-degrees, and a line passing through the middle of the needle to the ends pointed to the divisions. The minutes set down in the experiments were, by estimation, as the third of half a degree is counted ten minutes. The instruments were carefully placed, so that the needles vibrated exactly in the magnetic meridian.
meridian. The two needles were nearly balanced before they were made magnetical; but, by a curious contrivance of the Reverend Mr. Mitchell of a cross fixed on the axes of the needles (on the arms of which were cut very fine screws, to receive small buttons, that might be screwed nearer or farther from the axis), the needles could be adjusted both ways, to a great nicety, after they were made magnetical, by reversing the poles, and changing the sides of the needle.

First set of experiments made by Edward Nairne, at his house, No. 20, Cornhill.

| ° | |
| 72 | 20 |
| 72 | 20 |
| 72 | 20 |
| 72 | 20 |
| 72 | 20 |
| 72 | 20 |

Second set of experiments, with that side of the instrument to the East, which was to the West in the first observation.

| ° | | |
| 72 | 10 |
| 72 | 15 |
| 72 | 45 | Here the ends of the axis touched the agates. |
| 72 | 5 |
| 72 |

Third
Third set of experiments, in which the poles of the needle were reversed, but the same side of the instrument to the East, as in the second set of experiments, and the needle rather more magnetical, being touched with a larger set of magnets.

Fifth experiment, viz. the same end of the needle made North, as in the first set of experiments, and also the same side of the instrument to the West, as in the first set of experiments.

Fourth set of experiments, viz. the same side of the instrument to the East, as in the first set of experiments.

Oberved by Mr. Wales.

Experiments
Experiments made April 22, 1772, with the other Dipping-needle, the instrument being put in the same place, and with great care, in the magnetic meridian, the needle pointed as under.

\[72 \ 15 \]
\[72 \ 10 \]
\[72 \ 20 \]

The poles of the needle changed.

The side of the instrument to the East, which in the first observation was to the West.

Left any thing magnetical should have affected the needle in Mr. Nairne's house, he took this instrument, and placed it in the middle of a large room belonging to the London Assurance in Birchin-Lane, and then the needle pointed to

\[72 \ 10 \text{ or } 15 \]
\[72 \ 20 \]
\[72 \ 30 \]

The poles of the needle changed.

The side of the instrument to the East, which in the first observation was to the West.

The dipping-needle brought back to Mr. Edward Nairne's, and put in the same place as before, stood at

\[72 \ 10 \pm \]

The
In the foregoing experiments, the needle was raised to an horizontal position, and left to vibrate. It was between 8 or 9 minutes before the vibration ceased.

The needle brought to an horizontal position, and one grain and a half laid on the extremity of the South end, was not sufficient to keep it in an horizontal position; but the North end pointed to $35^\circ 30'$. One grain and three quarters laid on the extremity of the South end of the needle, was more than sufficient to keep it in an horizontal position, the South end then pointing $6^\circ 45'$ below o.

It having been judged proper to have a Drawing of the Dipping-Needle, the following Plate [Tab. XIII.] has been made, wherein

A A Represents the needle.
BB The ends of the axis resting on the friction-wheels.
CCCC The four friction-wheels.
DDDD Where flat agate caps are set in.
EEEE The divided circle of bell-metal.
FFFF The ends of the cross for adjusting the needle.
GG Two levels, whereby the line of 0 degrees of the instrument is set horizontal.
HH The perpendicular axis, whereby the instrument may be turned, that the divided face of the circle may front the East or West.
II An index fixed to the perpendicular axis H, and which points to an opposite line on the horizontal plate K, when the instrument is turned half round.
LLLL Four adjusting screws to set the instrument horizontal. One of them is hid behind the circle.
MMMM Screws which hold on the glass covers, to keep the needle from being disturbed by the wind.
AN

INDEX

TO THE

Sixty-Second VOLUME

OF THE

Philosophical Transactions.

A.

ACETOUS fermentation, its effects, p. 244.

Achard, Mr. his letter on swallows found annually torpid in the Rhine, p. 297.

Adanson, Mr. his account of European swallows caught near the African coast, examined, p. 277. His mistake about Canary birds, p. 278. His inaccuracy about the Roller, p. 321.

Air artificial, observations upon different kinds of it, p. 147, 148. No kind a conductor of electricity, p. 175. See Fixed, Inflammable, Nitrous.

Vol. LXII. Q q q Air
INDEX.

Air diminished by a mixture of iron filings and brimstone, p. 207, 208. Very noxious to animals, p. 209.

Air infected with respiration, p. 181. Unsuccessful trials to restore it, p. 183, 184, &c. Is the same with air tainted with animal putrefaction, p. 186, 187. Different from, though analogous to, fixed air, p. 188, 189. Not fatal to several insects, p. 192. Cured by vegetation, p. 193, &c.; and probably by a mixture of fixed air, p. 204.

Air in Ireland, and likewise in England, observed to be in a constant state of positive electricity, during winter, p. 138. Probably by the effect of cold, p. 139.

Air tainted with the fumes of charcoal, p. 225. Extinguishes flame, and destroys animals, p. 227.

Angular distance between two near land objects; how observed by Hadley's quadrant, p. 119, 120.

Animal living, not dissolved in the stomach of another animal, p. 449.

Antipodes our, may have a contrary electricity in the air, p. 189.

Antium, famous for its worship of the goddess Fortune, p. 63.

Aristotle, the author of the opinion about the cuckoos having no nest of their own, p. 322. Did not write from his own observations, p. 323.

Ascension, the point of the longest in the ecliptic, found, p. 438.

Astronomical observations at Portsmouth, p. 36, &c.

Astronomical problems solved by Dr. Pemberton, p. 434.

Atmosphere injured by the respiration of animals and putrefaction; probably restored by vegetation, p. 198.

Atmospherical electricity. See Air, Fogs, Electricity.
INDEX. 483

B.

Babelmandel, its freight of, how distinguished, p. 80, 81.
Badenach, Dr. James, his description of a bird from Malacca, p. 1.
Barker, Mr. Thomas, his meteorological register, p. 42, 43, &c.
Barrington, Hon. Daines, investigation of the specific characters of the rabbit, and the hare, p. 4. On the periodical appearing or disappearing of certain birds, p. 265.
Beaufort, duke, uncle to Henry V. his body found last year, p. 465.
Belon, his account of quails found at sea, p. 270. No argument for their migration, p. 271.
Birds, their periodical migration across considerable extents of sea, called in question, p. 266. Objections against this opinion, p. 267. At what height they can rise, p. 268. Whether night is a proper time for their flight, p. 269. Would want food, p. 292. Always fly against the wind, p. 293. Their disappearing during winter, accounted for, p. 300, 301. And during summer, p. 306.
Bladders not sufficient to secure different kinds of factitious air, p.
Body, well preserved 2 or 300 years after death, described, p. 466, &c.
Bohemian chatterer, a bird, why only seen now and then? p. 315.
Borlase, Dr. William, his meteorological observations for 1771, p. 365.
Bradley, the late Dr. James, a paper of his, containing directions for using the common micrometer, p. 46.
Buffon, M. attempts to prove the hare and rabbit to be really distinct species, from their not breeding together, p. 9.
INDEX.

Buxton waters analyzed and examined, p. 455, 456.

C.

Calcination of metals, its effects upon air, p. 228.

Call, John, Esq. on an Indian sketch of the signs of the Zodiac, p. 353.

Cascalote, a plant employed in California to dye in the deepest and most lasting black, p. 58.

Castle Loed, in the county of Ross, a strong sulphureous water found there, p. 15. Described by Dr. Mackenzie, p. 16, 17. Analyzed by Dr. Monro, p. 18, 19, &c. Mixed with sea-water, becomes similar to that of Harrowgate, p. 24.

Charcoal, its fumes infect common air, p. 225, 226.

Clouds, the nature and degree of their electricity ascertained, p. 142, 143.

Chyfter of fixed air administered in a putrid fever, p. 260.

Collignon, professor Charles, on a body found 2 or 300 years after death, p. 465.

Collinson, Mr. his account of swallows found at sea examined, p. 276. Relies too much upon Mr. Adanson's observations, p. 279.

Cook, Capt. John, his account of the flowing of the tides in the South Sea, p. 357.

Crosbills, grown more common since the plantation of firs, p. 316. Whether they feed on the kernels of apples, p. 317.

Cuckoo,
INDEX.

Cuckow, the common opinion about its nestlings doubtful, p. 299, 322, 324, &c. Never migrates from this island, p. 304.

D.

Denarius, of the Plætorian family, described, p. 60.
Dipping-needle a new, described, p. 476, 480.
Dog, breeds with a wolf, p. 9.
Doliod, Mr. Peter, his improvement of Hadley's Quadrant, p. 95, &c.
Dyes in red and yellow, p. 56.

E.

Ecliptic, the point of the longest ascension in it found, p. 438. The greatest difference of the arc from its oblique ascension, p. 444.
Elder, serviceable in preserving plants and trees from insects and flies, p. 348.
Electricity, the theory of it confirmed by a late violent lightning, p. 134, 135. Of the air, fogs, and clouds, p. 138, 145.
Electrometer a new, invented by Mr. Henley, p. 360. Its advantages, p. 361.
Ether imbibes fixed air, p. 156.

F.

Fairburn water in Scotland analysed, by Dr. Monro, p. 25.
Fermenting liquors emit a great quantity of fixed air, p. 148, 149. Recovered when flat by a mixture of it, p. 154.
INDEX.

p. 154. Contract a bad smell by a reabsorption of fixed air incorporated with ether, p. 156.

Fieldfare, where they breed, p. 313, 314.

Flounders have their mouths turned different ways, p. 306.

Fogs always occasion a positive electricity in the air, p. 139. Attended with the smell of an excited glass tube, p. 140. How their influence on electrical balls may be measured, ibid. and p. 145, 146.

Forster, Mr. John Reinhold, his account of the roots used by the Indians at Hudson's bay to dye porcupine quills, p. 54. His account of several quadrupeds from Hudson's bay, p. 370. And of birds from the same place, p. 382. His observation on the pectinated toes of several species of the grouse kind, p. 397. His Latin descriptions of some scarce birds from Hudson's bay, p. 423.

Fortune, see Sors.

Franklyn, Dr. Benjamin, his thoughts on the vegetable creation, p. 199. On the attraction of fire by plants, p. 234.

Fresh water, manner of distilling it from salt water at sea, p. 90.

G.

Geese wild, the highest fliers of all birds, p. 268.
INDEX.

George Island, its latitude and longitude, by Capt. Wallis, p. 34. Its longitude determined by Mr. Lexell, p. 73, 74.

Glass broken by electricity marked with beautiful colors, p. 363.

Graham, Mr. his remarks on several quadrupeds and birds found at Hudson's bay, p. 370.

Grouses, their genus, may be divided by the form of their toes, p. 297.

Gullet, Mr. Christopher, on the effects of elder upon insects, p. 348.

Guns, heard at a vast distance on the Red Sea, by the pilots at Judda, p. 85.

H.

Hadley's Quadrant, improvements made in it by Mr. Dollond, p. 95, 96. And by Mr. Maskeline, p. 99.

Hare Alpine, described, p. 11. 375.

Hare, the genus not easily distinguished from that of the rabbit, p. 4. Mistakes of authors in attempting to settle proper criteria between them, p. 5, 6. Two new characters proposed, p. 10.

Hare, from Hudson's bay, is one third less than the European hare, p. 5. Its different cloathing at different times of the year, p. 12. Manner of this change, p. 13. Some particulars of his way of living, p. 14—376.

Henley, Mr. William, his account of the lightning which fell on the chapel of Tottenham-Court-Road, p. 131, 132, &c. His new electrometer, p. 259. His experiments on breaking glass by means of electricity, p. 362.

Hey.
Hey, Mr. his experiments to prove that there is no oil of vitriol in water impregnated with fixed air, p. 253.

Holewel, J. Z. Esq; his account of a new species of oak, p. 128.

Hersey, Mr. on Eratosthenes's sieve, being a simple method of finding the prime numbers, p. 327.

Hudson's bay, several animals sent from thence and described, p. 370.

Hunter, Mr. John, on the digestion of the stomach after death, p. 447.

Ice-house, temperature in it moderate, p. 285.

India has the more ancient remnants of arts, sciences, and civilization, p. 354, 355.

Inflammable air, extracted from most kind of substances, p. 171. Differs in smell when made of vegetable, animal, or mineral substances, p. 172. Thought to be immiscible with water, p. 173. Rendered less inflammable, and even destructive of flame, by standing long, or being strongly agitated, in water, p. 174, 180. Kills animals instantaneously, p. 175. Immiscible with fixed air, p. 175. Partly absorbed by water, p. 179. The remaining part rendered fit for respiration, and like common air, p. 180.

Judda, a port on the Red Sea, its longitude and latitude, p. 77.

Kalm, Mr. his account of a swallow found 20 degrees from the American shore, considered, p. 288.
INDEX.

L.

Land-rail cannot fly over the sea, p. 318.
Letters, the ancient Roman, were Etruscan, p. 63.
Lexell, Mr. of Petersburgh, his determination of the Sun's parallax from the observations of the transit of Venus, p. 69, &c.
Lime-kilns, useful in putrid disorders, p. 205.
Lightning, effects of a violent flash, on the chapel at Tottenham Court Road, p. 233. Struck and killed a man there, p. 135.
Linnaeus, his specific characters of the rabbit considered, p. 6.
Lyndon, in Rutland, meteorological observations in that place, p. 43, 44.

M.

Malacca, a singular bird from thence described, p. 1, 2.
Majkelyne, Rev. Nevil, communicates a paper of the late Dr. Bradley on the common micrometers, p. 46. His improvements of Hadley's quadrant, p. 99, &c.
Matlock water examined, p. 459.
Meteorological observations at Ludgvan in Cornwall, p. 365.
Mice, employed in the experiments about the noxioufnss of air, p. 175, 182, &c. How kept, p. 249. Live without water, p. 250.
Micrometers, the use of them described by Dr. Bradley, p. 46, &c.
Milky appearance of some spots of water in the Red Sea ascribed to animalcules, p. 93, 94.
Mocha on the Red Sea, draughts of its road, p. 77. Its latitude and longitude, ibid.

Vol. LXII. R r s

Monse,
INDEX.

Monro, Dr. Donald, his account of several mineral waters in Scotland, p. 15.

N.

Nairne, Mr. contriver of a new dipping-needle, p. 476. His experiments with it, p. 477.

Natural History, its progress during several centuries and among different people, p. 295.

Nicomachus, Extracts from his arithmetic about Eratosthenes's sieve corrected and explained, p. 339.

Nightingales, whether they can migrate at any distance, p. 300. Not attended to at certain times, p. 32.

Numbers, See Prime.

O.

Oak, a new species observed and reared by Mr. Lucombe, 128. Its speedy growth described by Mr. Holwell, p. 129, &c.

Oboles, Six in a dram, p. 470.
INDEX.

Oenanthe crocata, a poisonous plant, found to have great virtues in the cure of some cutaneous disorders, p. 470, &c.

P.

Parallax of the Sun, deduced from the observations of the last transit of Venus, p. 69, &c.

Parallelism of the two surfaces of the index glass in Hadley’s quadrant, necessary for the exactness of observations, p. 115, 116. How the errors arising from the want of it may be remedied, p. 116, 117.

Pemberton, Dr. Henry, his geometrical solutions of some astronomical problems, p. 434.

Percival, Dr. Thomas, on the waters of Buxton and Matlock, p. 455.

Person killed by lightning, p. 135.

Phlogiston, an overload of it may infect air, p. 231, and is probably absorbed by growing plants, p. 233.

Pitkeatly, near Perth, its purging water described by Dr. Wood, p. 27. Analyzed by Dr. Monro, p. 27, 28.

Plants, in a state of vegetation, prevent the alteration which flame produces in the air, p. 166. And restore it when vitiated, p. 163, 169.

Porcupine quills, dyed by the natives of Hudson’s Bay in red and yellow, p. 46.

Portsmouth, its latitude deduced from astronomical observations, p. 38.

Prence the town of, worshiped Fortune, p. 63.

Priesley, Dr. Joseph, his observations on different kinds of air, p. 147. His description of Mr. Henley’s new electrometer, p. 359.

Pultney, Dr. Richard, on the medicinal virtues of a poisonus plant, p. 469.

Prime numbers, how to be found, p. 328–332.

Ptarmigan, the same bird in Europe and in America, p. 390.

Putrefaction, see Air, Vegetation.

R 1 r 2

Pymont
Pyrmont water imitated by means of fixed air incorporated in common water, p. 151, &c.

Quails, whether migratory, p. 272.

Rabbit, not indigenous in Sweden, p. 6. Which of them have red pupils, ibid. Difference between a warren and a tame rabbit, p. 7. See Hare.
Ray, his characteristicks of the hare and rabbit examined, p. 4, 5.
Redwings, their migrations considered, p. 313, 314.
Ronayne, Thomas Esq; his observations on Atmospherical electricity, p. 137.
Root, used by the Indians at Canada and at Hudson's-bay to dye in red and in yellow, p. 55. Ascertained and tried by Mr. Forster, p. 56, &c.

Sea Salt, the strongest spirit of, consists of two thirds of pure water, p. 239.
Snipes, constantly in some part of England, p. 306.
Solar eclipse observed in George Island, p. 34, 35.
Solway Moss, its irruption described, p. 123, 124. Phenomena attending this sudden inundation, p. 125, 126.
Sors, or Fortune, the goddess on several Denarii of the Plætorian family, p. 61. Worshiped at Antium and Prænesta, p. 63.
Spinach, the most effectual plant in restoring vitiated air, p. 170.

Stomach
INDEX.

Stomach cannot act upon itself during life, p. 449. But destroys itself after death, p. 450. This appearance more sensible after violent death, p. 452.
Storks never cross the sea from Holland to England, p. 319, 320.
Sun's altitude how to be observed with the quadrant, p. 128.
Swallows, whether they migrate over the sea, p. 276, 291.
Different species confounded, p. 280. Found torpid and clustered together in a pond, p. 289. In the Rhine, 297. And in several other places, p. 298.
Swinton, Rev. John, an account of a Denarius of the Plaetorian family, p. 60.

T.

Temperature comparative, of several waters, p. 464.
Tides, observations on them in the South Seas, p. 358.
Tisavoyanne jaune, what root it is, p. 54.
Tropic found, p. 445.
Tully, a passage of that author relative to the deities named Sortes, explained from an ancient coin, p. 62.

V.

Vapour of spirit of salt, p. 235. Its properties, ibid.
Vegetation restores air vitiated by flame, p. 166. And that which has been tainted by respiration or putrefaction, p. 194, &c.
Vitriolic acid, no sign of it in fixed air, p. 253.

W.

Walker, Mr. John, his account of the irruption of Solway Mof near Carlisle, p. 123.

Water,
INDEX.

White lead, its effluvia noxious, p. 231.

Witchel, Mr. George, some of his Astronomical observations at Portsmouth, p. 33.

Woodcocks, where they breed, p. 308, 309. Sleep in the day time, p. 309. If seen in the night, mistaken for owls, p. 311.

Woods, not unhealthy, p. 200:

Z.

Zodiac, signs of the, delineated in several temples in India, p. 353. Probably had their origin from thence, p. 354.

The End of the Sixty-Second Volume.

** There are Fourteen Copper-Plates in this Volume, as Table IV. is double.
ERRATA.

Vol. LXI.
Pag. 139. line 11. from the bottom, read upon, with regard to
141. l. 1. notes, eras the comma after Ex,
143. notes, l. penult, r. Archiepiscopis. l. 15. r. Redleiam
144. l. 2. r. Dena. Notes, l. 14. from the bottom, r. Noewera,
1. ult. r. Vincenii.
145. notes, l. 4. r. Crevecor.
147. l. 3. the 4th letter in the Saxon word should be r.

Vol. LXII.
Pag. xi. line penult. for vingtimee read vingtieme
6. 6 male Cuniculus Cuniculus
8. 1. is in other is other
ibid. 14. Jupiter Jupiter
37. 7. grows it grows
55. 21. distantis distantia
75. 21. (Tab. IV.) (Tab. IV. & Tab. IV.*
77. 22. weter water
125. note †, l. 4. them it
146. 8. note *, l. 2. Aédologue Aédologie
314. 17. cough chough
388. 21. Three-toed Three-toed
426. 17. vefti veftiti
429. 6. mandibu mandibula
457. 27. property proportion
462. note, line last, 207 287.